Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

svm_augment_train.py 6.4 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
  1. import argparse
  2. import logging
  3. import sys
  4. import optuna
  5. from sklearn.model_selection import KFold
  6. from sklearn.svm import SVC
  7. from tokenizers import Tokenizer
  8. from common.tools import *
  9. optuna.logging.get_logger("optuna").addHandler(logging.StreamHandler(sys.stdout))
  10. parser = argparse.ArgumentParser()
  11. parser.add_argument("GRAPH_VER", help="version of the graph you want regex to label your CSV with", type=str)
  12. parser.add_argument("DATASET_PATH", help="path to your input CSV", type=str)
  13. parser.add_argument("N_TRIALS", help="optuna n trials, if 0 use default hyperparams", type=int)
  14. args = parser.parse_args()
  15. GRAPH_VER = args.GRAPH_VER
  16. DATASET_PATH = args.DATASET_PATH
  17. N_TRIALS = args.N_TRIALS
  18. TOKENIZER_PATH = "../models/bpe_tokenizer.json"
  19. MODEL_DIR = "../models/hyper_svm_regex_graph_v{}.sav".format(GRAPH_VER)
  20. TFIDF_DIR = "../models/tfidf_hyper_svm_graph_v{}.pickle".format(GRAPH_VER)
  21. TAGS_TO_PREDICT = get_graph_vertices(GRAPH_VER)
  22. EXPERIMENT_DATA_PATH = ".."
  23. CODE_COLUMN = "code_block"
  24. TARGET_COLUMN = "graph_vertex_id"
  25. RANDOM_STATE = 42
  26. MAX_ITER = 10000
  27. HYPERPARAM_SPACE = {
  28. "svm_c": (1e-1, 1e3),
  29. "tfidf_min_df": (1, 10),
  30. "tfidf_max_df": (0.2, 0.7),
  31. "svm_kernel": ["linear", "poly", "rbf"],
  32. "svm_degree": (2, 6), # in case of poly kernel
  33. "masking_rate": (0.5, 1.0)
  34. }
  35. DEFAULT_HYPERPARAMS = {
  36. "svm__C": 5.82,
  37. "tfidf__min_df": 2,
  38. "tfidf__max_df": 0.30,
  39. "svm__kernel": "linear",
  40. "augmentation__masking_rate": 0.93,
  41. "tfidf__smooth_idf": True,
  42. "svm__random_state": RANDOM_STATE,
  43. "svm__max_iter": MAX_ITER,
  44. }
  45. def cross_val_scores(kf, clf, X, y, tfidf_params, masking_rate):
  46. f1s = []
  47. accuracies = []
  48. for i, (train_index, test_index) in enumerate(kf.split(X)):
  49. X_train, X_test = X.iloc[train_index], X.iloc[test_index]
  50. y_train, y_test = y[train_index], y[test_index]
  51. X_train = augment_mask(X_train, CODE_COLUMN, masking_rate)
  52. X_train = tfidf_fit_transform(X_train[CODE_COLUMN], tfidf_params, TFIDF_DIR).toarray()
  53. X_test = tfidf_transform(X_test[CODE_COLUMN], tfidf_params, TFIDF_DIR).toarray()
  54. clf.fit(X_train, y_train)
  55. y_pred = clf.predict(X_test)
  56. f1s.append(f1_score(y_test, y_pred, average="weighted"))
  57. accuracies.append(accuracy_score(y_test, y_pred))
  58. f1s = np.array(f1s)
  59. accuracies = np.array(accuracies)
  60. return f1s.mean(), f1s.std(), accuracies.mean(), accuracies.std()
  61. class Objective:
  62. def __init__(self, df, kfold_params, svm_c, tfidf_min_df, tfidf_max_df, svm_kernel, svm_degree, masking_rate):
  63. self.kf = KFold(**kfold_params)
  64. self.c_range = svm_c
  65. self.min_df_range = tfidf_min_df
  66. self.max_df_range = tfidf_max_df
  67. self.kernels = svm_kernel
  68. self.poly_degrees = svm_degree
  69. self.masking_rate = masking_rate
  70. self.df = df
  71. self.tokenizer = make_tokenizer(Tokenizer.from_file(TOKENIZER_PATH))
  72. def __call__(self, trial):
  73. tfidf_params = {
  74. "min_df": trial.suggest_int("tfidf__min_df", *self.min_df_range),
  75. "max_df": trial.suggest_loguniform("tfidf__max_df", *self.max_df_range),
  76. "smooth_idf": True,
  77. "ngram_range": (1, 2),
  78. "tokenizer": self.tokenizer,
  79. }
  80. X, y = self.df, self.df[TARGET_COLUMN].values
  81. svm_params = {
  82. "C": trial.suggest_loguniform("svm__C", *self.c_range),
  83. "kernel": trial.suggest_categorical("svm__kernel", self.kernels),
  84. "random_state": RANDOM_STATE,
  85. "max_iter": MAX_ITER,
  86. }
  87. masking_rate = trial.suggest_loguniform("augmentation__masking_rate", *self.masking_rate)
  88. if svm_params["kernel"] == "poly":
  89. svm_params["degree"] = trial.suggest_int("svm__degree", *self.poly_degrees)
  90. clf = SVC(**svm_params)
  91. f1_mean, _, _, _ = cross_val_scores(self.kf, clf, X, y, tfidf_params, masking_rate)
  92. return f1_mean
  93. def select_hyperparams(df, kfold_params, tfidf_path, model_path):
  94. """
  95. Uses optuna to find hyperparams that maximize F1 score
  96. :param df: labelled dataset
  97. :param kfold_params: parameters for sklearn's KFold
  98. :param tfidf_dir: where to save trained tf-idf
  99. :return: dict with parameters and metrics
  100. """
  101. study = optuna.create_study(direction="maximize", study_name="svm with kernels")
  102. objective = Objective(df, kfold_params, **HYPERPARAM_SPACE)
  103. if N_TRIALS > 0:
  104. study.optimize(objective, n_trials=N_TRIALS)
  105. params = study.best_params
  106. else:
  107. params = DEFAULT_HYPERPARAMS
  108. best_tfidf_params = {
  109. "smooth_idf": True,
  110. }
  111. best_svm_params = {
  112. "random_state": RANDOM_STATE,
  113. "max_iter": MAX_ITER,
  114. }
  115. best_masking_rate = 0
  116. for key, value in params.items():
  117. model_name, param_name = key.split("__")
  118. if model_name == "tfidf":
  119. best_tfidf_params[param_name] = value
  120. elif model_name == "svm":
  121. best_svm_params[param_name] = value
  122. elif model_name == "augmentation":
  123. best_masking_rate = value
  124. X, y = df, df[TARGET_COLUMN].values
  125. clf = SVC(**best_svm_params)
  126. f1_mean, f1_std, accuracy_mean, accuracy_std = cross_val_scores(objective.kf, clf, X, y, best_tfidf_params, best_masking_rate)
  127. X = augment_mask(X, CODE_COLUMN, best_masking_rate)
  128. X = tfidf_fit_transform(X[CODE_COLUMN], tfidf_params, TFIDF_DIR).toarray()
  129. clf.fit(X, y)
  130. pickle.dump(clf, open(model_path, "wb"))
  131. metrics = dict(
  132. test_f1_score=f1_mean,
  133. test_accuracy=accuracy_mean,
  134. test_f1_std=f1_std,
  135. test_accuracy_std=accuracy_std,
  136. )
  137. return best_tfidf_params, best_svm_params, best_masking_rate, metrics
  138. if __name__ == "__main__":
  139. df = load_data(DATASET_PATH)
  140. print(df.columns)
  141. nrows = df.shape[0]
  142. print("loaded")
  143. kfold_params = {
  144. "n_splits": 15,
  145. "random_state": RANDOM_STATE,
  146. "shuffle": True,
  147. }
  148. data_meta = {
  149. "DATASET_PATH": DATASET_PATH,
  150. "nrows": nrows,
  151. "label": TAGS_TO_PREDICT,
  152. "model": MODEL_DIR,
  153. "script_dir": __file__,
  154. }
  155. print("selecting hyperparameters")
  156. tfidf_params, svm_params, masking_rate, metrics = select_hyperparams(df, kfold_params, TFIDF_DIR, MODEL_DIR)
  157. print("hyperparams:", "\ntfidf", tfidf_params, "\nmasking_rate", masking_rate, "\nmodel", svm_params)
  158. print("metrics:", metrics)
  159. print("finished")
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...