Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

drop_block.py 5.7 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
  1. import torch
  2. import torch.fx
  3. import torch.nn.functional as F
  4. from torch import nn, Tensor
  5. from ..utils import _log_api_usage_once
  6. def drop_block2d(
  7. input: Tensor, p: float, block_size: int, inplace: bool = False, eps: float = 1e-06, training: bool = True
  8. ) -> Tensor:
  9. """
  10. Implements DropBlock2d from `"DropBlock: A regularization method for convolutional networks"
  11. <https://arxiv.org/abs/1810.12890>`.
  12. Args:
  13. input (Tensor[N, C, H, W]): The input tensor or 4-dimensions with the first one
  14. being its batch i.e. a batch with ``N`` rows.
  15. p (float): Probability of an element to be dropped.
  16. block_size (int): Size of the block to drop.
  17. inplace (bool): If set to ``True``, will do this operation in-place. Default: ``False``.
  18. eps (float): A value added to the denominator for numerical stability. Default: 1e-6.
  19. training (bool): apply dropblock if is ``True``. Default: ``True``.
  20. Returns:
  21. Tensor[N, C, H, W]: The randomly zeroed tensor after dropblock.
  22. """
  23. if not torch.jit.is_scripting() and not torch.jit.is_tracing():
  24. _log_api_usage_once(drop_block2d)
  25. if p < 0.0 or p > 1.0:
  26. raise ValueError(f"drop probability has to be between 0 and 1, but got {p}.")
  27. if input.ndim != 4:
  28. raise ValueError(f"input should be 4 dimensional. Got {input.ndim} dimensions.")
  29. if not training or p == 0.0:
  30. return input
  31. N, C, H, W = input.size()
  32. block_size = min(block_size, W, H)
  33. # compute the gamma of Bernoulli distribution
  34. gamma = (p * H * W) / ((block_size**2) * ((H - block_size + 1) * (W - block_size + 1)))
  35. noise = torch.empty((N, C, H - block_size + 1, W - block_size + 1), dtype=input.dtype, device=input.device)
  36. noise.bernoulli_(gamma)
  37. noise = F.pad(noise, [block_size // 2] * 4, value=0)
  38. noise = F.max_pool2d(noise, stride=(1, 1), kernel_size=(block_size, block_size), padding=block_size // 2)
  39. noise = 1 - noise
  40. normalize_scale = noise.numel() / (eps + noise.sum())
  41. if inplace:
  42. input.mul_(noise).mul_(normalize_scale)
  43. else:
  44. input = input * noise * normalize_scale
  45. return input
  46. def drop_block3d(
  47. input: Tensor, p: float, block_size: int, inplace: bool = False, eps: float = 1e-06, training: bool = True
  48. ) -> Tensor:
  49. """
  50. Implements DropBlock3d from `"DropBlock: A regularization method for convolutional networks"
  51. <https://arxiv.org/abs/1810.12890>`.
  52. Args:
  53. input (Tensor[N, C, D, H, W]): The input tensor or 5-dimensions with the first one
  54. being its batch i.e. a batch with ``N`` rows.
  55. p (float): Probability of an element to be dropped.
  56. block_size (int): Size of the block to drop.
  57. inplace (bool): If set to ``True``, will do this operation in-place. Default: ``False``.
  58. eps (float): A value added to the denominator for numerical stability. Default: 1e-6.
  59. training (bool): apply dropblock if is ``True``. Default: ``True``.
  60. Returns:
  61. Tensor[N, C, D, H, W]: The randomly zeroed tensor after dropblock.
  62. """
  63. if not torch.jit.is_scripting() and not torch.jit.is_tracing():
  64. _log_api_usage_once(drop_block3d)
  65. if p < 0.0 or p > 1.0:
  66. raise ValueError(f"drop probability has to be between 0 and 1, but got {p}.")
  67. if input.ndim != 5:
  68. raise ValueError(f"input should be 5 dimensional. Got {input.ndim} dimensions.")
  69. if not training or p == 0.0:
  70. return input
  71. N, C, D, H, W = input.size()
  72. block_size = min(block_size, D, H, W)
  73. # compute the gamma of Bernoulli distribution
  74. gamma = (p * D * H * W) / ((block_size**3) * ((D - block_size + 1) * (H - block_size + 1) * (W - block_size + 1)))
  75. noise = torch.empty(
  76. (N, C, D - block_size + 1, H - block_size + 1, W - block_size + 1), dtype=input.dtype, device=input.device
  77. )
  78. noise.bernoulli_(gamma)
  79. noise = F.pad(noise, [block_size // 2] * 6, value=0)
  80. noise = F.max_pool3d(
  81. noise, stride=(1, 1, 1), kernel_size=(block_size, block_size, block_size), padding=block_size // 2
  82. )
  83. noise = 1 - noise
  84. normalize_scale = noise.numel() / (eps + noise.sum())
  85. if inplace:
  86. input.mul_(noise).mul_(normalize_scale)
  87. else:
  88. input = input * noise * normalize_scale
  89. return input
  90. torch.fx.wrap("drop_block2d")
  91. class DropBlock2d(nn.Module):
  92. """
  93. See :func:`drop_block2d`.
  94. """
  95. def __init__(self, p: float, block_size: int, inplace: bool = False, eps: float = 1e-06) -> None:
  96. super().__init__()
  97. self.p = p
  98. self.block_size = block_size
  99. self.inplace = inplace
  100. self.eps = eps
  101. def forward(self, input: Tensor) -> Tensor:
  102. """
  103. Args:
  104. input (Tensor): Input feature map on which some areas will be randomly
  105. dropped.
  106. Returns:
  107. Tensor: The tensor after DropBlock layer.
  108. """
  109. return drop_block2d(input, self.p, self.block_size, self.inplace, self.eps, self.training)
  110. def __repr__(self) -> str:
  111. s = f"{self.__class__.__name__}(p={self.p}, block_size={self.block_size}, inplace={self.inplace})"
  112. return s
  113. torch.fx.wrap("drop_block3d")
  114. class DropBlock3d(DropBlock2d):
  115. """
  116. See :func:`drop_block3d`.
  117. """
  118. def __init__(self, p: float, block_size: int, inplace: bool = False, eps: float = 1e-06) -> None:
  119. super().__init__(p, block_size, inplace, eps)
  120. def forward(self, input: Tensor) -> Tensor:
  121. """
  122. Args:
  123. input (Tensor): Input feature map on which some areas will be randomly
  124. dropped.
  125. Returns:
  126. Tensor: The tensor after DropBlock layer.
  127. """
  128. return drop_block3d(input, self.p, self.block_size, self.inplace, self.eps, self.training)
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...