1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
|
- from functools import partial
- from typing import Any, Callable, List, Optional
- import torch
- from torch import nn, Tensor
- from ..ops.misc import Conv2dNormActivation
- from ..transforms._presets import ImageClassification
- from ..utils import _log_api_usage_once
- from ._api import register_model, Weights, WeightsEnum
- from ._meta import _IMAGENET_CATEGORIES
- from ._utils import _make_divisible, _ovewrite_named_param, handle_legacy_interface
- __all__ = ["MobileNetV2", "MobileNet_V2_Weights", "mobilenet_v2"]
- # necessary for backwards compatibility
- class InvertedResidual(nn.Module):
- def __init__(
- self, inp: int, oup: int, stride: int, expand_ratio: int, norm_layer: Optional[Callable[..., nn.Module]] = None
- ) -> None:
- super().__init__()
- self.stride = stride
- if stride not in [1, 2]:
- raise ValueError(f"stride should be 1 or 2 instead of {stride}")
- if norm_layer is None:
- norm_layer = nn.BatchNorm2d
- hidden_dim = int(round(inp * expand_ratio))
- self.use_res_connect = self.stride == 1 and inp == oup
- layers: List[nn.Module] = []
- if expand_ratio != 1:
- # pw
- layers.append(
- Conv2dNormActivation(inp, hidden_dim, kernel_size=1, norm_layer=norm_layer, activation_layer=nn.ReLU6)
- )
- layers.extend(
- [
- # dw
- Conv2dNormActivation(
- hidden_dim,
- hidden_dim,
- stride=stride,
- groups=hidden_dim,
- norm_layer=norm_layer,
- activation_layer=nn.ReLU6,
- ),
- # pw-linear
- nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
- norm_layer(oup),
- ]
- )
- self.conv = nn.Sequential(*layers)
- self.out_channels = oup
- self._is_cn = stride > 1
- def forward(self, x: Tensor) -> Tensor:
- if self.use_res_connect:
- return x + self.conv(x)
- else:
- return self.conv(x)
- class MobileNetV2(nn.Module):
- def __init__(
- self,
- num_classes: int = 1000,
- width_mult: float = 1.0,
- inverted_residual_setting: Optional[List[List[int]]] = None,
- round_nearest: int = 8,
- block: Optional[Callable[..., nn.Module]] = None,
- norm_layer: Optional[Callable[..., nn.Module]] = None,
- dropout: float = 0.2,
- ) -> None:
- """
- MobileNet V2 main class
- Args:
- num_classes (int): Number of classes
- width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount
- inverted_residual_setting: Network structure
- round_nearest (int): Round the number of channels in each layer to be a multiple of this number
- Set to 1 to turn off rounding
- block: Module specifying inverted residual building block for mobilenet
- norm_layer: Module specifying the normalization layer to use
- dropout (float): The droupout probability
- """
- super().__init__()
- _log_api_usage_once(self)
- if block is None:
- block = InvertedResidual
- if norm_layer is None:
- norm_layer = nn.BatchNorm2d
- input_channel = 32
- last_channel = 1280
- if inverted_residual_setting is None:
- inverted_residual_setting = [
- # t, c, n, s
- [1, 16, 1, 1],
- [6, 24, 2, 2],
- [6, 32, 3, 2],
- [6, 64, 4, 2],
- [6, 96, 3, 1],
- [6, 160, 3, 2],
- [6, 320, 1, 1],
- ]
- # only check the first element, assuming user knows t,c,n,s are required
- if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4:
- raise ValueError(
- f"inverted_residual_setting should be non-empty or a 4-element list, got {inverted_residual_setting}"
- )
- # building first layer
- input_channel = _make_divisible(input_channel * width_mult, round_nearest)
- self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
- features: List[nn.Module] = [
- Conv2dNormActivation(3, input_channel, stride=2, norm_layer=norm_layer, activation_layer=nn.ReLU6)
- ]
- # building inverted residual blocks
- for t, c, n, s in inverted_residual_setting:
- output_channel = _make_divisible(c * width_mult, round_nearest)
- for i in range(n):
- stride = s if i == 0 else 1
- features.append(block(input_channel, output_channel, stride, expand_ratio=t, norm_layer=norm_layer))
- input_channel = output_channel
- # building last several layers
- features.append(
- Conv2dNormActivation(
- input_channel, self.last_channel, kernel_size=1, norm_layer=norm_layer, activation_layer=nn.ReLU6
- )
- )
- # make it nn.Sequential
- self.features = nn.Sequential(*features)
- # building classifier
- self.classifier = nn.Sequential(
- nn.Dropout(p=dropout),
- nn.Linear(self.last_channel, num_classes),
- )
- # weight initialization
- for m in self.modules():
- if isinstance(m, nn.Conv2d):
- nn.init.kaiming_normal_(m.weight, mode="fan_out")
- if m.bias is not None:
- nn.init.zeros_(m.bias)
- elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
- nn.init.ones_(m.weight)
- nn.init.zeros_(m.bias)
- elif isinstance(m, nn.Linear):
- nn.init.normal_(m.weight, 0, 0.01)
- nn.init.zeros_(m.bias)
- def _forward_impl(self, x: Tensor) -> Tensor:
- # This exists since TorchScript doesn't support inheritance, so the superclass method
- # (this one) needs to have a name other than `forward` that can be accessed in a subclass
- x = self.features(x)
- # Cannot use "squeeze" as batch-size can be 1
- x = nn.functional.adaptive_avg_pool2d(x, (1, 1))
- x = torch.flatten(x, 1)
- x = self.classifier(x)
- return x
- def forward(self, x: Tensor) -> Tensor:
- return self._forward_impl(x)
- _COMMON_META = {
- "num_params": 3504872,
- "min_size": (1, 1),
- "categories": _IMAGENET_CATEGORIES,
- }
- class MobileNet_V2_Weights(WeightsEnum):
- IMAGENET1K_V1 = Weights(
- url="https://download.pytorch.org/models/mobilenet_v2-b0353104.pth",
- transforms=partial(ImageClassification, crop_size=224),
- meta={
- **_COMMON_META,
- "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#mobilenetv2",
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 71.878,
- "acc@5": 90.286,
- }
- },
- "_ops": 0.301,
- "_file_size": 13.555,
- "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
- },
- )
- IMAGENET1K_V2 = Weights(
- url="https://download.pytorch.org/models/mobilenet_v2-7ebf99e0.pth",
- transforms=partial(ImageClassification, crop_size=224, resize_size=232),
- meta={
- **_COMMON_META,
- "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-reg-tuning",
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 72.154,
- "acc@5": 90.822,
- }
- },
- "_ops": 0.301,
- "_file_size": 13.598,
- "_docs": """
- These weights improve upon the results of the original paper by using a modified version of TorchVision's
- `new training recipe
- <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
- """,
- },
- )
- DEFAULT = IMAGENET1K_V2
- @register_model()
- @handle_legacy_interface(weights=("pretrained", MobileNet_V2_Weights.IMAGENET1K_V1))
- def mobilenet_v2(
- *, weights: Optional[MobileNet_V2_Weights] = None, progress: bool = True, **kwargs: Any
- ) -> MobileNetV2:
- """MobileNetV2 architecture from the `MobileNetV2: Inverted Residuals and Linear
- Bottlenecks <https://arxiv.org/abs/1801.04381>`_ paper.
- Args:
- weights (:class:`~torchvision.models.MobileNet_V2_Weights`, optional): The
- pretrained weights to use. See
- :class:`~torchvision.models.MobileNet_V2_Weights` below for
- more details, and possible values. By default, no pre-trained
- weights are used.
- progress (bool, optional): If True, displays a progress bar of the
- download to stderr. Default is True.
- **kwargs: parameters passed to the ``torchvision.models.mobilenetv2.MobileNetV2``
- base class. Please refer to the `source code
- <https://github.com/pytorch/vision/blob/main/torchvision/models/mobilenetv2.py>`_
- for more details about this class.
- .. autoclass:: torchvision.models.MobileNet_V2_Weights
- :members:
- """
- weights = MobileNet_V2_Weights.verify(weights)
- if weights is not None:
- _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
- model = MobileNetV2(**kwargs)
- if weights is not None:
- model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
- return model
|