1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
|
- import pathlib
- from typing import Any, Callable, Optional, Tuple, Union
- from .folder import default_loader
- from .utils import verify_str_arg
- from .vision import VisionDataset
- class StanfordCars(VisionDataset):
- """Stanford Cars Dataset
- The Cars dataset contains 16,185 images of 196 classes of cars. The data is
- split into 8,144 training images and 8,041 testing images, where each class
- has been split roughly in a 50-50 split
- The original URL is https://ai.stanford.edu/~jkrause/cars/car_dataset.html, but it is broken.
- Follow the instructions in ``download`` argument to obtain and use the dataset offline.
- .. note::
- This class needs `scipy <https://docs.scipy.org/doc/>`_ to load target files from `.mat` format.
- Args:
- root (str or ``pathlib.Path``): Root directory of dataset
- split (string, optional): The dataset split, supports ``"train"`` (default) or ``"test"``.
- transform (callable, optional): A function/transform that takes in a PIL image or torch.Tensor, depends on the given loader,
- and returns a transformed version. E.g, ``transforms.RandomCrop``
- target_transform (callable, optional): A function/transform that takes in the
- target and transforms it.
- download (bool, optional): This parameter exists for backward compatibility but it does not
- download the dataset, since the original URL is not available anymore. The dataset
- seems to be available on Kaggle so you can try to manually download and configure it using
- `these instructions <https://github.com/pytorch/vision/issues/7545#issuecomment-1631441616>`_,
- or use an integrated
- `dataset on Kaggle <https://github.com/pytorch/vision/issues/7545#issuecomment-2282674373>`_.
- In both cases, first download and configure the dataset locally, and use the dataset with
- ``"download=False"``.
- loader (callable, optional): A function to load an image given its path.
- By default, it uses PIL as its image loader, but users could also pass in
- ``torchvision.io.decode_image`` for decoding image data into tensors directly.
- """
- def __init__(
- self,
- root: Union[str, pathlib.Path],
- split: str = "train",
- transform: Optional[Callable] = None,
- target_transform: Optional[Callable] = None,
- download: bool = False,
- loader: Callable[[str], Any] = default_loader,
- ) -> None:
- try:
- import scipy.io as sio
- except ImportError:
- raise RuntimeError("Scipy is not found. This dataset needs to have scipy installed: pip install scipy")
- super().__init__(root, transform=transform, target_transform=target_transform)
- self._split = verify_str_arg(split, "split", ("train", "test"))
- self._base_folder = pathlib.Path(root) / "stanford_cars"
- devkit = self._base_folder / "devkit"
- if self._split == "train":
- self._annotations_mat_path = devkit / "cars_train_annos.mat"
- self._images_base_path = self._base_folder / "cars_train"
- else:
- self._annotations_mat_path = self._base_folder / "cars_test_annos_withlabels.mat"
- self._images_base_path = self._base_folder / "cars_test"
- if download:
- self.download()
- if not self._check_exists():
- raise RuntimeError(
- "Dataset not found. Try to manually download following the instructions in "
- "https://github.com/pytorch/vision/issues/7545#issuecomment-1631441616."
- )
- self._samples = [
- (
- str(self._images_base_path / annotation["fname"]),
- annotation["class"] - 1, # Original target mapping starts from 1, hence -1
- )
- for annotation in sio.loadmat(self._annotations_mat_path, squeeze_me=True)["annotations"]
- ]
- self.classes = sio.loadmat(str(devkit / "cars_meta.mat"), squeeze_me=True)["class_names"].tolist()
- self.class_to_idx = {cls: i for i, cls in enumerate(self.classes)}
- self.loader = loader
- def __len__(self) -> int:
- return len(self._samples)
- def __getitem__(self, idx: int) -> Tuple[Any, Any]:
- """Returns pil_image and class_id for given index"""
- image_path, target = self._samples[idx]
- image = self.loader(image_path)
- if self.transform is not None:
- image = self.transform(image)
- if self.target_transform is not None:
- target = self.target_transform(target)
- return image, target
- def _check_exists(self) -> bool:
- if not (self._base_folder / "devkit").is_dir():
- return False
- return self._annotations_mat_path.exists() and self._images_base_path.is_dir()
- def download(self):
- raise ValueError(
- "The original URL is broken so the StanfordCars dataset is not available for automatic "
- "download anymore. You can try to download it manually following "
- "https://github.com/pytorch/vision/issues/7545#issuecomment-1631441616, "
- "and set download=False to avoid this error."
- )
|