1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
|
- import os
- import os.path
- from pathlib import Path
- from typing import Any, Callable, Dict, List, Optional, Tuple, Union
- from PIL import Image
- from .utils import download_and_extract_archive, verify_str_arg
- from .vision import VisionDataset
- CATEGORIES_2021 = ["kingdom", "phylum", "class", "order", "family", "genus"]
- DATASET_URLS = {
- "2017": "https://ml-inat-competition-datasets.s3.amazonaws.com/2017/train_val_images.tar.gz",
- "2018": "https://ml-inat-competition-datasets.s3.amazonaws.com/2018/train_val2018.tar.gz",
- "2019": "https://ml-inat-competition-datasets.s3.amazonaws.com/2019/train_val2019.tar.gz",
- "2021_train": "https://ml-inat-competition-datasets.s3.amazonaws.com/2021/train.tar.gz",
- "2021_train_mini": "https://ml-inat-competition-datasets.s3.amazonaws.com/2021/train_mini.tar.gz",
- "2021_valid": "https://ml-inat-competition-datasets.s3.amazonaws.com/2021/val.tar.gz",
- }
- DATASET_MD5 = {
- "2017": "7c784ea5e424efaec655bd392f87301f",
- "2018": "b1c6952ce38f31868cc50ea72d066cc3",
- "2019": "c60a6e2962c9b8ccbd458d12c8582644",
- "2021_train": "e0526d53c7f7b2e3167b2b43bb2690ed",
- "2021_train_mini": "db6ed8330e634445efc8fec83ae81442",
- "2021_valid": "f6f6e0e242e3d4c9569ba56400938afc",
- }
- class INaturalist(VisionDataset):
- """`iNaturalist <https://github.com/visipedia/inat_comp>`_ Dataset.
- Args:
- root (str or ``pathlib.Path``): Root directory of dataset where the image files are stored.
- This class does not require/use annotation files.
- version (string, optional): Which version of the dataset to download/use. One of
- '2017', '2018', '2019', '2021_train', '2021_train_mini', '2021_valid'.
- Default: `2021_train`.
- target_type (string or list, optional): Type of target to use, for 2021 versions, one of:
- - ``full``: the full category (species)
- - ``kingdom``: e.g. "Animalia"
- - ``phylum``: e.g. "Arthropoda"
- - ``class``: e.g. "Insecta"
- - ``order``: e.g. "Coleoptera"
- - ``family``: e.g. "Cleridae"
- - ``genus``: e.g. "Trichodes"
- for 2017-2019 versions, one of:
- - ``full``: the full (numeric) category
- - ``super``: the super category, e.g. "Amphibians"
- Can also be a list to output a tuple with all specified target types.
- Defaults to ``full``.
- transform (callable, optional): A function/transform that takes in a PIL image
- and returns a transformed version. E.g, ``transforms.RandomCrop``
- target_transform (callable, optional): A function/transform that takes in the
- target and transforms it.
- download (bool, optional): If true, downloads the dataset from the internet and
- puts it in root directory. If dataset is already downloaded, it is not
- downloaded again.
- loader (callable, optional): A function to load an image given its path.
- By default, it uses PIL as its image loader, but users could also pass in
- ``torchvision.io.decode_image`` for decoding image data into tensors directly.
- """
- def __init__(
- self,
- root: Union[str, Path],
- version: str = "2021_train",
- target_type: Union[List[str], str] = "full",
- transform: Optional[Callable] = None,
- target_transform: Optional[Callable] = None,
- download: bool = False,
- loader: Optional[Callable[[Union[str, Path]], Any]] = None,
- ) -> None:
- self.version = verify_str_arg(version, "version", DATASET_URLS.keys())
- super().__init__(os.path.join(root, version), transform=transform, target_transform=target_transform)
- os.makedirs(root, exist_ok=True)
- if download:
- self.download()
- if not self._check_exists():
- raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it")
- self.all_categories: List[str] = []
- # map: category type -> name of category -> index
- self.categories_index: Dict[str, Dict[str, int]] = {}
- # list indexed by category id, containing mapping from category type -> index
- self.categories_map: List[Dict[str, int]] = []
- if not isinstance(target_type, list):
- target_type = [target_type]
- if self.version[:4] == "2021":
- self.target_type = [verify_str_arg(t, "target_type", ("full", *CATEGORIES_2021)) for t in target_type]
- self._init_2021()
- else:
- self.target_type = [verify_str_arg(t, "target_type", ("full", "super")) for t in target_type]
- self._init_pre2021()
- # index of all files: (full category id, filename)
- self.index: List[Tuple[int, str]] = []
- for dir_index, dir_name in enumerate(self.all_categories):
- files = os.listdir(os.path.join(self.root, dir_name))
- for fname in files:
- self.index.append((dir_index, fname))
- self.loader = loader
- def _init_2021(self) -> None:
- """Initialize based on 2021 layout"""
- self.all_categories = sorted(os.listdir(self.root))
- # map: category type -> name of category -> index
- self.categories_index = {k: {} for k in CATEGORIES_2021}
- for dir_index, dir_name in enumerate(self.all_categories):
- pieces = dir_name.split("_")
- if len(pieces) != 8:
- raise RuntimeError(f"Unexpected category name {dir_name}, wrong number of pieces")
- if pieces[0] != f"{dir_index:05d}":
- raise RuntimeError(f"Unexpected category id {pieces[0]}, expecting {dir_index:05d}")
- cat_map = {}
- for cat, name in zip(CATEGORIES_2021, pieces[1:7]):
- if name in self.categories_index[cat]:
- cat_id = self.categories_index[cat][name]
- else:
- cat_id = len(self.categories_index[cat])
- self.categories_index[cat][name] = cat_id
- cat_map[cat] = cat_id
- self.categories_map.append(cat_map)
- def _init_pre2021(self) -> None:
- """Initialize based on 2017-2019 layout"""
- # map: category type -> name of category -> index
- self.categories_index = {"super": {}}
- cat_index = 0
- super_categories = sorted(os.listdir(self.root))
- for sindex, scat in enumerate(super_categories):
- self.categories_index["super"][scat] = sindex
- subcategories = sorted(os.listdir(os.path.join(self.root, scat)))
- for subcat in subcategories:
- if self.version == "2017":
- # this version does not use ids as directory names
- subcat_i = cat_index
- cat_index += 1
- else:
- try:
- subcat_i = int(subcat)
- except ValueError:
- raise RuntimeError(f"Unexpected non-numeric dir name: {subcat}")
- if subcat_i >= len(self.categories_map):
- old_len = len(self.categories_map)
- self.categories_map.extend([{}] * (subcat_i - old_len + 1))
- self.all_categories.extend([""] * (subcat_i - old_len + 1))
- if self.categories_map[subcat_i]:
- raise RuntimeError(f"Duplicate category {subcat}")
- self.categories_map[subcat_i] = {"super": sindex}
- self.all_categories[subcat_i] = os.path.join(scat, subcat)
- # validate the dictionary
- for cindex, c in enumerate(self.categories_map):
- if not c:
- raise RuntimeError(f"Missing category {cindex}")
- def __getitem__(self, index: int) -> Tuple[Any, Any]:
- """
- Args:
- index (int): Index
- Returns:
- tuple: (image, target) where the type of target specified by target_type.
- """
- cat_id, fname = self.index[index]
- image_path = os.path.join(self.root, self.all_categories[cat_id], fname)
- img = self.loader(image_path) if self.loader is not None else Image.open(image_path)
- target: Any = []
- for t in self.target_type:
- if t == "full":
- target.append(cat_id)
- else:
- target.append(self.categories_map[cat_id][t])
- target = tuple(target) if len(target) > 1 else target[0]
- if self.transform is not None:
- img = self.transform(img)
- if self.target_transform is not None:
- target = self.target_transform(target)
- return img, target
- def __len__(self) -> int:
- return len(self.index)
- def category_name(self, category_type: str, category_id: int) -> str:
- """
- Args:
- category_type(str): one of "full", "kingdom", "phylum", "class", "order", "family", "genus" or "super"
- category_id(int): an index (class id) from this category
- Returns:
- the name of the category
- """
- if category_type == "full":
- return self.all_categories[category_id]
- else:
- if category_type not in self.categories_index:
- raise ValueError(f"Invalid category type '{category_type}'")
- else:
- for name, id in self.categories_index[category_type].items():
- if id == category_id:
- return name
- raise ValueError(f"Invalid category id {category_id} for {category_type}")
- def _check_exists(self) -> bool:
- return os.path.exists(self.root) and len(os.listdir(self.root)) > 0
- def download(self) -> None:
- if self._check_exists():
- return
- base_root = os.path.dirname(self.root)
- download_and_extract_archive(
- DATASET_URLS[self.version], base_root, filename=f"{self.version}.tgz", md5=DATASET_MD5[self.version]
- )
- orig_dir_name = os.path.join(base_root, os.path.basename(DATASET_URLS[self.version]).rstrip(".tar.gz"))
- if not os.path.exists(orig_dir_name):
- raise RuntimeError(f"Unable to find downloaded files at {orig_dir_name}")
- os.rename(orig_dir_name, self.root)
|