1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
|
- import glob
- import os
- from collections import defaultdict
- from html.parser import HTMLParser
- from pathlib import Path
- from typing import Any, Callable, Dict, List, Optional, Tuple, Union
- from .folder import default_loader
- from .vision import VisionDataset
- class Flickr8kParser(HTMLParser):
- """Parser for extracting captions from the Flickr8k dataset web page."""
- def __init__(self, root: Union[str, Path]) -> None:
- super().__init__()
- self.root = root
- # Data structure to store captions
- self.annotations: Dict[str, List[str]] = {}
- # State variables
- self.in_table = False
- self.current_tag: Optional[str] = None
- self.current_img: Optional[str] = None
- def handle_starttag(self, tag: str, attrs: List[Tuple[str, Optional[str]]]) -> None:
- self.current_tag = tag
- if tag == "table":
- self.in_table = True
- def handle_endtag(self, tag: str) -> None:
- self.current_tag = None
- if tag == "table":
- self.in_table = False
- def handle_data(self, data: str) -> None:
- if self.in_table:
- if data == "Image Not Found":
- self.current_img = None
- elif self.current_tag == "a":
- img_id = data.split("/")[-2]
- img_id = os.path.join(self.root, img_id + "_*.jpg")
- img_id = glob.glob(img_id)[0]
- self.current_img = img_id
- self.annotations[img_id] = []
- elif self.current_tag == "li" and self.current_img:
- img_id = self.current_img
- self.annotations[img_id].append(data.strip())
- class Flickr8k(VisionDataset):
- """`Flickr8k Entities <http://hockenmaier.cs.illinois.edu/8k-pictures.html>`_ Dataset.
- Args:
- root (str or ``pathlib.Path``): Root directory where images are downloaded to.
- ann_file (string): Path to annotation file.
- transform (callable, optional): A function/transform that takes in a PIL image or torch.Tensor, depends on the given loader,
- and returns a transformed version. E.g, ``transforms.RandomCrop``
- target_transform (callable, optional): A function/transform that takes in the
- target and transforms it.
- loader (callable, optional): A function to load an image given its path.
- By default, it uses PIL as its image loader, but users could also pass in
- ``torchvision.io.decode_image`` for decoding image data into tensors directly.
- """
- def __init__(
- self,
- root: Union[str, Path],
- ann_file: str,
- transform: Optional[Callable] = None,
- target_transform: Optional[Callable] = None,
- loader: Callable[[str], Any] = default_loader,
- ) -> None:
- super().__init__(root, transform=transform, target_transform=target_transform)
- self.ann_file = os.path.expanduser(ann_file)
- # Read annotations and store in a dict
- parser = Flickr8kParser(self.root)
- with open(self.ann_file) as fh:
- parser.feed(fh.read())
- self.annotations = parser.annotations
- self.ids = list(sorted(self.annotations.keys()))
- self.loader = loader
- def __getitem__(self, index: int) -> Tuple[Any, Any]:
- """
- Args:
- index (int): Index
- Returns:
- tuple: Tuple (image, target). target is a list of captions for the image.
- """
- img_id = self.ids[index]
- # Image
- img = self.loader(img_id)
- if self.transform is not None:
- img = self.transform(img)
- # Captions
- target = self.annotations[img_id]
- if self.target_transform is not None:
- target = self.target_transform(target)
- return img, target
- def __len__(self) -> int:
- return len(self.ids)
- class Flickr30k(VisionDataset):
- """`Flickr30k Entities <https://bryanplummer.com/Flickr30kEntities/>`_ Dataset.
- Args:
- root (str or ``pathlib.Path``): Root directory where images are downloaded to.
- ann_file (string): Path to annotation file.
- transform (callable, optional): A function/transform that takes in a PIL image or torch.Tensor, depends on the given loader,
- and returns a transformed version. E.g, ``transforms.RandomCrop``
- target_transform (callable, optional): A function/transform that takes in the
- target and transforms it.
- loader (callable, optional): A function to load an image given its path.
- By default, it uses PIL as its image loader, but users could also pass in
- ``torchvision.io.decode_image`` for decoding image data into tensors directly.
- """
- def __init__(
- self,
- root: str,
- ann_file: str,
- transform: Optional[Callable] = None,
- target_transform: Optional[Callable] = None,
- loader: Callable[[str], Any] = default_loader,
- ) -> None:
- super().__init__(root, transform=transform, target_transform=target_transform)
- self.ann_file = os.path.expanduser(ann_file)
- # Read annotations and store in a dict
- self.annotations = defaultdict(list)
- with open(self.ann_file) as fh:
- for line in fh:
- img_id, caption = line.strip().split("\t")
- self.annotations[img_id[:-2]].append(caption)
- self.ids = list(sorted(self.annotations.keys()))
- self.loader = loader
- def __getitem__(self, index: int) -> Tuple[Any, Any]:
- """
- Args:
- index (int): Index
- Returns:
- tuple: Tuple (image, target). target is a list of captions for the image.
- """
- img_id = self.ids[index]
- # Image
- filename = os.path.join(self.root, img_id)
- img = self.loader(filename)
- if self.transform is not None:
- img = self.transform(img)
- # Captions
- target = self.annotations[img_id]
- if self.target_transform is not None:
- target = self.target_transform(target)
- return img, target
- def __len__(self) -> int:
- return len(self.ids)
|