1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
|
- from pathlib import Path
- from typing import Any, Callable, Optional, Union
- from .folder import default_loader, ImageFolder
- from .utils import download_and_extract_archive, verify_str_arg
- class Country211(ImageFolder):
- """`The Country211 Data Set <https://github.com/openai/CLIP/blob/main/data/country211.md>`_ from OpenAI.
- This dataset was built by filtering the images from the YFCC100m dataset
- that have GPS coordinate corresponding to a ISO-3166 country code. The
- dataset is balanced by sampling 150 train images, 50 validation images, and
- 100 test images for each country.
- Args:
- root (str or ``pathlib.Path``): Root directory of the dataset.
- split (string, optional): The dataset split, supports ``"train"`` (default), ``"valid"`` and ``"test"``.
- transform (callable, optional): A function/transform that takes in a PIL image or torch.Tensor, depends on the given loader,
- and returns a transformed version. E.g, ``transforms.RandomCrop``
- target_transform (callable, optional): A function/transform that takes in the target and transforms it.
- download (bool, optional): If True, downloads the dataset from the internet and puts it into
- ``root/country211/``. If dataset is already downloaded, it is not downloaded again.
- loader (callable, optional): A function to load an image given its path.
- By default, it uses PIL as its image loader, but users could also pass in
- ``torchvision.io.decode_image`` for decoding image data into tensors directly.
- """
- _URL = "https://openaipublic.azureedge.net/clip/data/country211.tgz"
- _MD5 = "84988d7644798601126c29e9877aab6a"
- def __init__(
- self,
- root: Union[str, Path],
- split: str = "train",
- transform: Optional[Callable] = None,
- target_transform: Optional[Callable] = None,
- download: bool = False,
- loader: Callable[[str], Any] = default_loader,
- ) -> None:
- self._split = verify_str_arg(split, "split", ("train", "valid", "test"))
- root = Path(root).expanduser()
- self.root = str(root)
- self._base_folder = root / "country211"
- if download:
- self._download()
- if not self._check_exists():
- raise RuntimeError("Dataset not found. You can use download=True to download it")
- super().__init__(
- str(self._base_folder / self._split),
- transform=transform,
- target_transform=target_transform,
- loader=loader,
- )
- self.root = str(root)
- def _check_exists(self) -> bool:
- return self._base_folder.exists() and self._base_folder.is_dir()
- def _download(self) -> None:
- if self._check_exists():
- return
- download_and_extract_archive(self._URL, download_root=self.root, md5=self._MD5)
|