1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
|
- import math
- import os
- import pytest
- import torch
- import torchvision
- from torchvision.io import _HAS_GPU_VIDEO_DECODER, VideoReader
- try:
- import av
- except ImportError:
- av = None
- VIDEO_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets", "videos")
- @pytest.mark.skipif(_HAS_GPU_VIDEO_DECODER is False, reason="Didn't compile with support for gpu decoder")
- class TestVideoGPUDecoder:
- @pytest.mark.skipif(av is None, reason="PyAV unavailable")
- @pytest.mark.parametrize(
- "video_file",
- [
- "RATRACE_wave_f_nm_np1_fr_goo_37.avi",
- "TrumanShow_wave_f_nm_np1_fr_med_26.avi",
- "v_SoccerJuggling_g23_c01.avi",
- "v_SoccerJuggling_g24_c01.avi",
- "R6llTwEh07w.mp4",
- "SOX5yA1l24A.mp4",
- "WUzgd7C1pWA.mp4",
- ],
- )
- def test_frame_reading(self, video_file):
- torchvision.set_video_backend("cuda")
- full_path = os.path.join(VIDEO_DIR, video_file)
- decoder = VideoReader(full_path)
- with av.open(full_path) as container:
- for av_frame in container.decode(container.streams.video[0]):
- av_frames = torch.tensor(av_frame.to_rgb(src_colorspace="ITU709").to_ndarray())
- vision_frames = next(decoder)["data"]
- mean_delta = torch.mean(torch.abs(av_frames.float() - vision_frames.cpu().float()))
- assert mean_delta < 0.75
- @pytest.mark.skipif(av is None, reason="PyAV unavailable")
- @pytest.mark.parametrize("keyframes", [True, False])
- @pytest.mark.parametrize(
- "full_path, duration",
- [
- (os.path.join(VIDEO_DIR, x), y)
- for x, y in [
- ("v_SoccerJuggling_g23_c01.avi", 8.0),
- ("v_SoccerJuggling_g24_c01.avi", 8.0),
- ("R6llTwEh07w.mp4", 10.0),
- ("SOX5yA1l24A.mp4", 11.0),
- ("WUzgd7C1pWA.mp4", 11.0),
- ]
- ],
- )
- def test_seek_reading(self, keyframes, full_path, duration):
- torchvision.set_video_backend("cuda")
- decoder = VideoReader(full_path)
- time = duration / 2
- decoder.seek(time, keyframes_only=keyframes)
- with av.open(full_path) as container:
- container.seek(int(time * 1000000), any_frame=not keyframes, backward=False)
- for av_frame in container.decode(container.streams.video[0]):
- av_frames = torch.tensor(av_frame.to_rgb(src_colorspace="ITU709").to_ndarray())
- vision_frames = next(decoder)["data"]
- mean_delta = torch.mean(torch.abs(av_frames.float() - vision_frames.cpu().float()))
- assert mean_delta < 0.75
- @pytest.mark.skipif(av is None, reason="PyAV unavailable")
- @pytest.mark.parametrize(
- "video_file",
- [
- "RATRACE_wave_f_nm_np1_fr_goo_37.avi",
- "TrumanShow_wave_f_nm_np1_fr_med_26.avi",
- "v_SoccerJuggling_g23_c01.avi",
- "v_SoccerJuggling_g24_c01.avi",
- "R6llTwEh07w.mp4",
- "SOX5yA1l24A.mp4",
- "WUzgd7C1pWA.mp4",
- ],
- )
- def test_metadata(self, video_file):
- torchvision.set_video_backend("cuda")
- full_path = os.path.join(VIDEO_DIR, video_file)
- decoder = VideoReader(full_path)
- video_metadata = decoder.get_metadata()["video"]
- with av.open(full_path) as container:
- video = container.streams.video[0]
- av_duration = float(video.duration * video.time_base)
- assert math.isclose(video_metadata["duration"], av_duration, rel_tol=1e-2)
- assert math.isclose(video_metadata["fps"], video.base_rate, rel_tol=1e-2)
- if __name__ == "__main__":
- pytest.main([__file__])
|