1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
|
- import random
- import warnings
- import numpy as np
- import pytest
- import torch
- from common_utils import assert_equal
- from torchvision.transforms import Compose
- try:
- from scipy import stats
- except ImportError:
- stats = None
- with warnings.catch_warnings(record=True):
- warnings.simplefilter("always")
- import torchvision.transforms._transforms_video as transforms
- class TestVideoTransforms:
- def test_random_crop_video(self):
- numFrames = random.randint(4, 128)
- height = random.randint(10, 32) * 2
- width = random.randint(10, 32) * 2
- oheight = random.randint(5, (height - 2) // 2) * 2
- owidth = random.randint(5, (width - 2) // 2) * 2
- clip = torch.randint(0, 256, (numFrames, height, width, 3), dtype=torch.uint8)
- result = Compose(
- [
- transforms.ToTensorVideo(),
- transforms.RandomCropVideo((oheight, owidth)),
- ]
- )(clip)
- assert result.size(2) == oheight
- assert result.size(3) == owidth
- transforms.RandomCropVideo((oheight, owidth)).__repr__()
- def test_random_resized_crop_video(self):
- numFrames = random.randint(4, 128)
- height = random.randint(10, 32) * 2
- width = random.randint(10, 32) * 2
- oheight = random.randint(5, (height - 2) // 2) * 2
- owidth = random.randint(5, (width - 2) // 2) * 2
- clip = torch.randint(0, 256, (numFrames, height, width, 3), dtype=torch.uint8)
- result = Compose(
- [
- transforms.ToTensorVideo(),
- transforms.RandomResizedCropVideo((oheight, owidth)),
- ]
- )(clip)
- assert result.size(2) == oheight
- assert result.size(3) == owidth
- transforms.RandomResizedCropVideo((oheight, owidth)).__repr__()
- def test_center_crop_video(self):
- numFrames = random.randint(4, 128)
- height = random.randint(10, 32) * 2
- width = random.randint(10, 32) * 2
- oheight = random.randint(5, (height - 2) // 2) * 2
- owidth = random.randint(5, (width - 2) // 2) * 2
- clip = torch.ones((numFrames, height, width, 3), dtype=torch.uint8) * 255
- oh1 = (height - oheight) // 2
- ow1 = (width - owidth) // 2
- clipNarrow = clip[:, oh1 : oh1 + oheight, ow1 : ow1 + owidth, :]
- clipNarrow.fill_(0)
- result = Compose(
- [
- transforms.ToTensorVideo(),
- transforms.CenterCropVideo((oheight, owidth)),
- ]
- )(clip)
- msg = (
- "height: " + str(height) + " width: " + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth)
- )
- assert result.sum().item() == 0, msg
- oheight += 1
- owidth += 1
- result = Compose(
- [
- transforms.ToTensorVideo(),
- transforms.CenterCropVideo((oheight, owidth)),
- ]
- )(clip)
- sum1 = result.sum()
- msg = (
- "height: " + str(height) + " width: " + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth)
- )
- assert sum1.item() > 1, msg
- oheight += 1
- owidth += 1
- result = Compose(
- [
- transforms.ToTensorVideo(),
- transforms.CenterCropVideo((oheight, owidth)),
- ]
- )(clip)
- sum2 = result.sum()
- msg = (
- "height: " + str(height) + " width: " + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth)
- )
- assert sum2.item() > 1, msg
- assert sum2.item() > sum1.item(), msg
- @pytest.mark.skipif(stats is None, reason="scipy.stats is not available")
- @pytest.mark.parametrize("channels", [1, 3])
- def test_normalize_video(self, channels):
- def samples_from_standard_normal(tensor):
- p_value = stats.kstest(list(tensor.view(-1)), "norm", args=(0, 1)).pvalue
- return p_value > 0.0001
- random_state = random.getstate()
- random.seed(42)
- numFrames = random.randint(4, 128)
- height = random.randint(32, 256)
- width = random.randint(32, 256)
- mean = random.random()
- std = random.random()
- clip = torch.normal(mean, std, size=(channels, numFrames, height, width))
- mean = [clip[c].mean().item() for c in range(channels)]
- std = [clip[c].std().item() for c in range(channels)]
- normalized = transforms.NormalizeVideo(mean, std)(clip)
- assert samples_from_standard_normal(normalized)
- random.setstate(random_state)
- # Checking the optional in-place behaviour
- tensor = torch.rand((3, 128, 16, 16))
- tensor_inplace = transforms.NormalizeVideo((0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)(tensor)
- assert_equal(tensor, tensor_inplace)
- transforms.NormalizeVideo((0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True).__repr__()
- def test_to_tensor_video(self):
- numFrames, height, width = 64, 4, 4
- trans = transforms.ToTensorVideo()
- with pytest.raises(TypeError):
- np_rng = np.random.RandomState(0)
- trans(np_rng.rand(numFrames, height, width, 1).tolist())
- with pytest.raises(TypeError):
- trans(torch.rand((numFrames, height, width, 1), dtype=torch.float))
- with pytest.raises(ValueError):
- trans(torch.ones((3, numFrames, height, width, 3), dtype=torch.uint8))
- with pytest.raises(ValueError):
- trans(torch.ones((height, width, 3), dtype=torch.uint8))
- with pytest.raises(ValueError):
- trans(torch.ones((width, 3), dtype=torch.uint8))
- with pytest.raises(ValueError):
- trans(torch.ones((3), dtype=torch.uint8))
- trans.__repr__()
- @pytest.mark.parametrize("p", (0, 1))
- def test_random_horizontal_flip_video(self, p):
- clip = torch.rand((3, 4, 112, 112), dtype=torch.float)
- hclip = clip.flip(-1)
- out = transforms.RandomHorizontalFlipVideo(p=p)(clip)
- if p == 0:
- torch.testing.assert_close(out, clip)
- elif p == 1:
- torch.testing.assert_close(out, hclip)
- transforms.RandomHorizontalFlipVideo().__repr__()
- if __name__ == "__main__":
- pytest.main([__file__])
|