1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
|
- import pytest
- import torch
- import torchvision.models
- from common_utils import assert_equal
- from torchvision.models.detection.faster_rcnn import FastRCNNPredictor, TwoMLPHead
- from torchvision.models.detection.roi_heads import RoIHeads
- from torchvision.models.detection.rpn import AnchorGenerator, RegionProposalNetwork, RPNHead
- from torchvision.ops import MultiScaleRoIAlign
- class TestModelsDetectionNegativeSamples:
- def _make_empty_sample(self, add_masks=False, add_keypoints=False):
- images = [torch.rand((3, 100, 100), dtype=torch.float32)]
- boxes = torch.zeros((0, 4), dtype=torch.float32)
- negative_target = {
- "boxes": boxes,
- "labels": torch.zeros(0, dtype=torch.int64),
- "image_id": 4,
- "area": (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0]),
- "iscrowd": torch.zeros((0,), dtype=torch.int64),
- }
- if add_masks:
- negative_target["masks"] = torch.zeros(0, 100, 100, dtype=torch.uint8)
- if add_keypoints:
- negative_target["keypoints"] = torch.zeros(17, 0, 3, dtype=torch.float32)
- targets = [negative_target]
- return images, targets
- def test_targets_to_anchors(self):
- _, targets = self._make_empty_sample()
- anchors = [torch.randint(-50, 50, (3, 4), dtype=torch.float32)]
- anchor_sizes = ((32,), (64,), (128,), (256,), (512,))
- aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
- rpn_anchor_generator = AnchorGenerator(anchor_sizes, aspect_ratios)
- rpn_head = RPNHead(4, rpn_anchor_generator.num_anchors_per_location()[0])
- head = RegionProposalNetwork(rpn_anchor_generator, rpn_head, 0.5, 0.3, 256, 0.5, 2000, 2000, 0.7, 0.05)
- labels, matched_gt_boxes = head.assign_targets_to_anchors(anchors, targets)
- assert labels[0].sum() == 0
- assert labels[0].shape == torch.Size([anchors[0].shape[0]])
- assert labels[0].dtype == torch.float32
- assert matched_gt_boxes[0].sum() == 0
- assert matched_gt_boxes[0].shape == anchors[0].shape
- assert matched_gt_boxes[0].dtype == torch.float32
- def test_assign_targets_to_proposals(self):
- proposals = [torch.randint(-50, 50, (20, 4), dtype=torch.float32)]
- gt_boxes = [torch.zeros((0, 4), dtype=torch.float32)]
- gt_labels = [torch.tensor([[0]], dtype=torch.int64)]
- box_roi_pool = MultiScaleRoIAlign(featmap_names=["0", "1", "2", "3"], output_size=7, sampling_ratio=2)
- resolution = box_roi_pool.output_size[0]
- representation_size = 1024
- box_head = TwoMLPHead(4 * resolution**2, representation_size)
- representation_size = 1024
- box_predictor = FastRCNNPredictor(representation_size, 2)
- roi_heads = RoIHeads(
- # Box
- box_roi_pool,
- box_head,
- box_predictor,
- 0.5,
- 0.5,
- 512,
- 0.25,
- None,
- 0.05,
- 0.5,
- 100,
- )
- matched_idxs, labels = roi_heads.assign_targets_to_proposals(proposals, gt_boxes, gt_labels)
- assert matched_idxs[0].sum() == 0
- assert matched_idxs[0].shape == torch.Size([proposals[0].shape[0]])
- assert matched_idxs[0].dtype == torch.int64
- assert labels[0].sum() == 0
- assert labels[0].shape == torch.Size([proposals[0].shape[0]])
- assert labels[0].dtype == torch.int64
- @pytest.mark.parametrize(
- "name",
- [
- "fasterrcnn_resnet50_fpn",
- "fasterrcnn_mobilenet_v3_large_fpn",
- "fasterrcnn_mobilenet_v3_large_320_fpn",
- ],
- )
- def test_forward_negative_sample_frcnn(self, name):
- model = torchvision.models.get_model(
- name, weights=None, weights_backbone=None, num_classes=2, min_size=100, max_size=100
- )
- images, targets = self._make_empty_sample()
- loss_dict = model(images, targets)
- assert_equal(loss_dict["loss_box_reg"], torch.tensor(0.0))
- assert_equal(loss_dict["loss_rpn_box_reg"], torch.tensor(0.0))
- def test_forward_negative_sample_mrcnn(self):
- model = torchvision.models.detection.maskrcnn_resnet50_fpn(
- weights=None, weights_backbone=None, num_classes=2, min_size=100, max_size=100
- )
- images, targets = self._make_empty_sample(add_masks=True)
- loss_dict = model(images, targets)
- assert_equal(loss_dict["loss_box_reg"], torch.tensor(0.0))
- assert_equal(loss_dict["loss_rpn_box_reg"], torch.tensor(0.0))
- assert_equal(loss_dict["loss_mask"], torch.tensor(0.0))
- def test_forward_negative_sample_krcnn(self):
- model = torchvision.models.detection.keypointrcnn_resnet50_fpn(
- weights=None, weights_backbone=None, num_classes=2, min_size=100, max_size=100
- )
- images, targets = self._make_empty_sample(add_keypoints=True)
- loss_dict = model(images, targets)
- assert_equal(loss_dict["loss_box_reg"], torch.tensor(0.0))
- assert_equal(loss_dict["loss_rpn_box_reg"], torch.tensor(0.0))
- assert_equal(loss_dict["loss_keypoint"], torch.tensor(0.0))
- def test_forward_negative_sample_retinanet(self):
- model = torchvision.models.detection.retinanet_resnet50_fpn(
- weights=None, weights_backbone=None, num_classes=2, min_size=100, max_size=100
- )
- images, targets = self._make_empty_sample()
- loss_dict = model(images, targets)
- assert_equal(loss_dict["bbox_regression"], torch.tensor(0.0))
- def test_forward_negative_sample_fcos(self):
- model = torchvision.models.detection.fcos_resnet50_fpn(
- weights=None, weights_backbone=None, num_classes=2, min_size=100, max_size=100
- )
- images, targets = self._make_empty_sample()
- loss_dict = model(images, targets)
- assert_equal(loss_dict["bbox_regression"], torch.tensor(0.0))
- assert_equal(loss_dict["bbox_ctrness"], torch.tensor(0.0))
- def test_forward_negative_sample_ssd(self):
- model = torchvision.models.detection.ssd300_vgg16(weights=None, weights_backbone=None, num_classes=2)
- images, targets = self._make_empty_sample()
- loss_dict = model(images, targets)
- assert_equal(loss_dict["bbox_regression"], torch.tensor(0.0))
- if __name__ == "__main__":
- pytest.main([__file__])
|