1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
|
- import datetime
- import os
- import time
- import warnings
- import datasets
- import presets
- import torch
- import torch.utils.data
- import torchvision
- import torchvision.datasets.video_utils
- import utils
- from torch import nn
- from torch.utils.data.dataloader import default_collate
- from torchvision.datasets.samplers import DistributedSampler, RandomClipSampler, UniformClipSampler
- def train_one_epoch(model, criterion, optimizer, lr_scheduler, data_loader, device, epoch, print_freq, scaler=None):
- model.train()
- metric_logger = utils.MetricLogger(delimiter=" ")
- metric_logger.add_meter("lr", utils.SmoothedValue(window_size=1, fmt="{value}"))
- metric_logger.add_meter("clips/s", utils.SmoothedValue(window_size=10, fmt="{value:.3f}"))
- header = f"Epoch: [{epoch}]"
- for video, target, _ in metric_logger.log_every(data_loader, print_freq, header):
- start_time = time.time()
- video, target = video.to(device), target.to(device)
- with torch.cuda.amp.autocast(enabled=scaler is not None):
- output = model(video)
- loss = criterion(output, target)
- optimizer.zero_grad()
- if scaler is not None:
- scaler.scale(loss).backward()
- scaler.step(optimizer)
- scaler.update()
- else:
- loss.backward()
- optimizer.step()
- acc1, acc5 = utils.accuracy(output, target, topk=(1, 5))
- batch_size = video.shape[0]
- metric_logger.update(loss=loss.item(), lr=optimizer.param_groups[0]["lr"])
- metric_logger.meters["acc1"].update(acc1.item(), n=batch_size)
- metric_logger.meters["acc5"].update(acc5.item(), n=batch_size)
- metric_logger.meters["clips/s"].update(batch_size / (time.time() - start_time))
- lr_scheduler.step()
- def evaluate(model, criterion, data_loader, device):
- model.eval()
- metric_logger = utils.MetricLogger(delimiter=" ")
- header = "Test:"
- num_processed_samples = 0
- # Group and aggregate output of a video
- num_videos = len(data_loader.dataset.samples)
- num_classes = len(data_loader.dataset.classes)
- agg_preds = torch.zeros((num_videos, num_classes), dtype=torch.float32, device=device)
- agg_targets = torch.zeros((num_videos), dtype=torch.int32, device=device)
- with torch.inference_mode():
- for video, target, video_idx in metric_logger.log_every(data_loader, 100, header):
- video = video.to(device, non_blocking=True)
- target = target.to(device, non_blocking=True)
- output = model(video)
- loss = criterion(output, target)
- # Use softmax to convert output into prediction probability
- preds = torch.softmax(output, dim=1)
- for b in range(video.size(0)):
- idx = video_idx[b].item()
- agg_preds[idx] += preds[b].detach()
- agg_targets[idx] = target[b].detach().item()
- acc1, acc5 = utils.accuracy(output, target, topk=(1, 5))
- # FIXME need to take into account that the datasets
- # could have been padded in distributed setup
- batch_size = video.shape[0]
- metric_logger.update(loss=loss.item())
- metric_logger.meters["acc1"].update(acc1.item(), n=batch_size)
- metric_logger.meters["acc5"].update(acc5.item(), n=batch_size)
- num_processed_samples += batch_size
- # gather the stats from all processes
- num_processed_samples = utils.reduce_across_processes(num_processed_samples)
- if isinstance(data_loader.sampler, DistributedSampler):
- # Get the len of UniformClipSampler inside DistributedSampler
- num_data_from_sampler = len(data_loader.sampler.dataset)
- else:
- num_data_from_sampler = len(data_loader.sampler)
- if (
- hasattr(data_loader.dataset, "__len__")
- and num_data_from_sampler != num_processed_samples
- and torch.distributed.get_rank() == 0
- ):
- # See FIXME above
- warnings.warn(
- f"It looks like the sampler has {num_data_from_sampler} samples, but {num_processed_samples} "
- "samples were used for the validation, which might bias the results. "
- "Try adjusting the batch size and / or the world size. "
- "Setting the world size to 1 is always a safe bet."
- )
- metric_logger.synchronize_between_processes()
- print(
- " * Clip Acc@1 {top1.global_avg:.3f} Clip Acc@5 {top5.global_avg:.3f}".format(
- top1=metric_logger.acc1, top5=metric_logger.acc5
- )
- )
- # Reduce the agg_preds and agg_targets from all gpu and show result
- agg_preds = utils.reduce_across_processes(agg_preds)
- agg_targets = utils.reduce_across_processes(agg_targets, op=torch.distributed.ReduceOp.MAX)
- agg_acc1, agg_acc5 = utils.accuracy(agg_preds, agg_targets, topk=(1, 5))
- print(" * Video Acc@1 {acc1:.3f} Video Acc@5 {acc5:.3f}".format(acc1=agg_acc1, acc5=agg_acc5))
- return metric_logger.acc1.global_avg
- def _get_cache_path(filepath, args):
- import hashlib
- value = f"{filepath}-{args.clip_len}-{args.kinetics_version}-{args.frame_rate}"
- h = hashlib.sha1(value.encode()).hexdigest()
- cache_path = os.path.join("~", ".torch", "vision", "datasets", "kinetics", h[:10] + ".pt")
- cache_path = os.path.expanduser(cache_path)
- return cache_path
- def collate_fn(batch):
- # remove audio from the batch
- batch = [(d[0], d[2], d[3]) for d in batch]
- return default_collate(batch)
- def main(args):
- if args.output_dir:
- utils.mkdir(args.output_dir)
- utils.init_distributed_mode(args)
- print(args)
- device = torch.device(args.device)
- if args.use_deterministic_algorithms:
- torch.backends.cudnn.benchmark = False
- torch.use_deterministic_algorithms(True)
- else:
- torch.backends.cudnn.benchmark = True
- # Data loading code
- print("Loading data")
- val_resize_size = tuple(args.val_resize_size)
- val_crop_size = tuple(args.val_crop_size)
- train_resize_size = tuple(args.train_resize_size)
- train_crop_size = tuple(args.train_crop_size)
- traindir = os.path.join(args.data_path, "train")
- valdir = os.path.join(args.data_path, "val")
- print("Loading training data")
- st = time.time()
- cache_path = _get_cache_path(traindir, args)
- transform_train = presets.VideoClassificationPresetTrain(crop_size=train_crop_size, resize_size=train_resize_size)
- if args.cache_dataset and os.path.exists(cache_path):
- print(f"Loading dataset_train from {cache_path}")
- dataset, _ = torch.load(cache_path, weights_only=False)
- dataset.transform = transform_train
- else:
- if args.distributed:
- print("It is recommended to pre-compute the dataset cache on a single-gpu first, as it will be faster")
- dataset = datasets.KineticsWithVideoId(
- args.data_path,
- frames_per_clip=args.clip_len,
- num_classes=args.kinetics_version,
- split="train",
- step_between_clips=1,
- transform=transform_train,
- frame_rate=args.frame_rate,
- extensions=(
- "avi",
- "mp4",
- ),
- output_format="TCHW",
- )
- if args.cache_dataset:
- print(f"Saving dataset_train to {cache_path}")
- utils.mkdir(os.path.dirname(cache_path))
- utils.save_on_master((dataset, traindir), cache_path)
- print("Took", time.time() - st)
- print("Loading validation data")
- cache_path = _get_cache_path(valdir, args)
- if args.weights and args.test_only:
- weights = torchvision.models.get_weight(args.weights)
- transform_test = weights.transforms()
- else:
- transform_test = presets.VideoClassificationPresetEval(crop_size=val_crop_size, resize_size=val_resize_size)
- if args.cache_dataset and os.path.exists(cache_path):
- print(f"Loading dataset_test from {cache_path}")
- dataset_test, _ = torch.load(cache_path, weights_only=False)
- dataset_test.transform = transform_test
- else:
- if args.distributed:
- print("It is recommended to pre-compute the dataset cache on a single-gpu first, as it will be faster")
- dataset_test = datasets.KineticsWithVideoId(
- args.data_path,
- frames_per_clip=args.clip_len,
- num_classes=args.kinetics_version,
- split="val",
- step_between_clips=1,
- transform=transform_test,
- frame_rate=args.frame_rate,
- extensions=(
- "avi",
- "mp4",
- ),
- output_format="TCHW",
- )
- if args.cache_dataset:
- print(f"Saving dataset_test to {cache_path}")
- utils.mkdir(os.path.dirname(cache_path))
- utils.save_on_master((dataset_test, valdir), cache_path)
- print("Creating data loaders")
- train_sampler = RandomClipSampler(dataset.video_clips, args.clips_per_video)
- test_sampler = UniformClipSampler(dataset_test.video_clips, args.clips_per_video)
- if args.distributed:
- train_sampler = DistributedSampler(train_sampler)
- test_sampler = DistributedSampler(test_sampler, shuffle=False)
- data_loader = torch.utils.data.DataLoader(
- dataset,
- batch_size=args.batch_size,
- sampler=train_sampler,
- num_workers=args.workers,
- pin_memory=True,
- collate_fn=collate_fn,
- )
- data_loader_test = torch.utils.data.DataLoader(
- dataset_test,
- batch_size=args.batch_size,
- sampler=test_sampler,
- num_workers=args.workers,
- pin_memory=True,
- collate_fn=collate_fn,
- )
- print("Creating model")
- model = torchvision.models.get_model(args.model, weights=args.weights)
- model.to(device)
- if args.distributed and args.sync_bn:
- model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
- criterion = nn.CrossEntropyLoss()
- optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
- scaler = torch.cuda.amp.GradScaler() if args.amp else None
- # convert scheduler to be per iteration, not per epoch, for warmup that lasts
- # between different epochs
- iters_per_epoch = len(data_loader)
- lr_milestones = [iters_per_epoch * (m - args.lr_warmup_epochs) for m in args.lr_milestones]
- main_lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=lr_milestones, gamma=args.lr_gamma)
- if args.lr_warmup_epochs > 0:
- warmup_iters = iters_per_epoch * args.lr_warmup_epochs
- args.lr_warmup_method = args.lr_warmup_method.lower()
- if args.lr_warmup_method == "linear":
- warmup_lr_scheduler = torch.optim.lr_scheduler.LinearLR(
- optimizer, start_factor=args.lr_warmup_decay, total_iters=warmup_iters
- )
- elif args.lr_warmup_method == "constant":
- warmup_lr_scheduler = torch.optim.lr_scheduler.ConstantLR(
- optimizer, factor=args.lr_warmup_decay, total_iters=warmup_iters
- )
- else:
- raise RuntimeError(
- f"Invalid warmup lr method '{args.lr_warmup_method}'. Only linear and constant are supported."
- )
- lr_scheduler = torch.optim.lr_scheduler.SequentialLR(
- optimizer, schedulers=[warmup_lr_scheduler, main_lr_scheduler], milestones=[warmup_iters]
- )
- else:
- lr_scheduler = main_lr_scheduler
- model_without_ddp = model
- if args.distributed:
- model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
- model_without_ddp = model.module
- if args.resume:
- checkpoint = torch.load(args.resume, map_location="cpu", weights_only=True)
- model_without_ddp.load_state_dict(checkpoint["model"])
- optimizer.load_state_dict(checkpoint["optimizer"])
- lr_scheduler.load_state_dict(checkpoint["lr_scheduler"])
- args.start_epoch = checkpoint["epoch"] + 1
- if args.amp:
- scaler.load_state_dict(checkpoint["scaler"])
- if args.test_only:
- # We disable the cudnn benchmarking because it can noticeably affect the accuracy
- torch.backends.cudnn.benchmark = False
- torch.backends.cudnn.deterministic = True
- evaluate(model, criterion, data_loader_test, device=device)
- return
- print("Start training")
- start_time = time.time()
- for epoch in range(args.start_epoch, args.epochs):
- if args.distributed:
- train_sampler.set_epoch(epoch)
- train_one_epoch(model, criterion, optimizer, lr_scheduler, data_loader, device, epoch, args.print_freq, scaler)
- evaluate(model, criterion, data_loader_test, device=device)
- if args.output_dir:
- checkpoint = {
- "model": model_without_ddp.state_dict(),
- "optimizer": optimizer.state_dict(),
- "lr_scheduler": lr_scheduler.state_dict(),
- "epoch": epoch,
- "args": args,
- }
- if args.amp:
- checkpoint["scaler"] = scaler.state_dict()
- utils.save_on_master(checkpoint, os.path.join(args.output_dir, f"model_{epoch}.pth"))
- utils.save_on_master(checkpoint, os.path.join(args.output_dir, "checkpoint.pth"))
- total_time = time.time() - start_time
- total_time_str = str(datetime.timedelta(seconds=int(total_time)))
- print(f"Training time {total_time_str}")
- def get_args_parser(add_help=True):
- import argparse
- parser = argparse.ArgumentParser(description="PyTorch Video Classification Training", add_help=add_help)
- parser.add_argument("--data-path", default="/datasets01_101/kinetics/070618/", type=str, help="dataset path")
- parser.add_argument(
- "--kinetics-version", default="400", type=str, choices=["400", "600"], help="Select kinetics version"
- )
- parser.add_argument("--model", default="r2plus1d_18", type=str, help="model name")
- parser.add_argument("--device", default="cuda", type=str, help="device (Use cuda or cpu Default: cuda)")
- parser.add_argument("--clip-len", default=16, type=int, metavar="N", help="number of frames per clip")
- parser.add_argument("--frame-rate", default=15, type=int, metavar="N", help="the frame rate")
- parser.add_argument(
- "--clips-per-video", default=5, type=int, metavar="N", help="maximum number of clips per video to consider"
- )
- parser.add_argument(
- "-b", "--batch-size", default=24, type=int, help="images per gpu, the total batch size is $NGPU x batch_size"
- )
- parser.add_argument("--epochs", default=45, type=int, metavar="N", help="number of total epochs to run")
- parser.add_argument(
- "-j", "--workers", default=10, type=int, metavar="N", help="number of data loading workers (default: 10)"
- )
- parser.add_argument("--lr", default=0.64, type=float, help="initial learning rate")
- parser.add_argument("--momentum", default=0.9, type=float, metavar="M", help="momentum")
- parser.add_argument(
- "--wd",
- "--weight-decay",
- default=1e-4,
- type=float,
- metavar="W",
- help="weight decay (default: 1e-4)",
- dest="weight_decay",
- )
- parser.add_argument("--lr-milestones", nargs="+", default=[20, 30, 40], type=int, help="decrease lr on milestones")
- parser.add_argument("--lr-gamma", default=0.1, type=float, help="decrease lr by a factor of lr-gamma")
- parser.add_argument("--lr-warmup-epochs", default=10, type=int, help="the number of epochs to warmup (default: 10)")
- parser.add_argument("--lr-warmup-method", default="linear", type=str, help="the warmup method (default: linear)")
- parser.add_argument("--lr-warmup-decay", default=0.001, type=float, help="the decay for lr")
- parser.add_argument("--print-freq", default=10, type=int, help="print frequency")
- parser.add_argument("--output-dir", default=".", type=str, help="path to save outputs")
- parser.add_argument("--resume", default="", type=str, help="path of checkpoint")
- parser.add_argument("--start-epoch", default=0, type=int, metavar="N", help="start epoch")
- parser.add_argument(
- "--cache-dataset",
- dest="cache_dataset",
- help="Cache the datasets for quicker initialization. It also serializes the transforms",
- action="store_true",
- )
- parser.add_argument(
- "--sync-bn",
- dest="sync_bn",
- help="Use sync batch norm",
- action="store_true",
- )
- parser.add_argument(
- "--test-only",
- dest="test_only",
- help="Only test the model",
- action="store_true",
- )
- parser.add_argument(
- "--use-deterministic-algorithms", action="store_true", help="Forces the use of deterministic algorithms only."
- )
- # distributed training parameters
- parser.add_argument("--world-size", default=1, type=int, help="number of distributed processes")
- parser.add_argument("--dist-url", default="env://", type=str, help="url used to set up distributed training")
- parser.add_argument(
- "--val-resize-size",
- default=(128, 171),
- nargs="+",
- type=int,
- help="the resize size used for validation (default: (128, 171))",
- )
- parser.add_argument(
- "--val-crop-size",
- default=(112, 112),
- nargs="+",
- type=int,
- help="the central crop size used for validation (default: (112, 112))",
- )
- parser.add_argument(
- "--train-resize-size",
- default=(128, 171),
- nargs="+",
- type=int,
- help="the resize size used for training (default: (128, 171))",
- )
- parser.add_argument(
- "--train-crop-size",
- default=(112, 112),
- nargs="+",
- type=int,
- help="the random crop size used for training (default: (112, 112))",
- )
- parser.add_argument("--weights", default=None, type=str, help="the weights enum name to load")
- # Mixed precision training parameters
- parser.add_argument("--amp", action="store_true", help="Use torch.cuda.amp for mixed precision training")
- return parser
- if __name__ == "__main__":
- args = get_args_parser().parse_args()
- main(args)
|