Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel
Nicolas Hug a9a726a5bd
Make v2 transforms authoring public (#8787)
8 months ago
..
f96deba0f8
Fixes documentation typo from semantic segmentation reference (#8002)
1 year ago
b9b7cfc602
Add --backend and --use-v2 support for segmentation references (#7743)
2 years ago
d5f4cc38dc
Datapoint -> TVTensor; datapoint[s] -> tv_tensor[s] (#7894)
1 year ago
c35d3855cc
[TorchFix] Add weights_only to torch.load (#8105)
1 year ago
9f0afd5539
Replaced ConvertImageDtype by ToDtype in reference scripts (#7862)
2 years ago
622bb2699d
Fix IoUs reported in segmentation references (#7916)
1 year ago
a9a726a5bd
Make v2 transforms authoring public (#8787)
8 months ago

README.md

You have to be logged in to leave a comment. Sign In

Semantic segmentation reference training scripts

This folder contains reference training scripts for semantic segmentation. They serve as a log of how to train specific models and provide baseline training and evaluation scripts to quickly bootstrap research.

All models have been trained on 8x V100 GPUs.

You must modify the following flags:

--data-path=/path/to/dataset

--nproc_per_node=<number_of_gpus_available>

fcn_resnet50

torchrun --nproc_per_node=8 train.py --lr 0.02 --dataset coco -b 4 --model fcn_resnet50 --aux-loss --weights-backbone ResNet50_Weights.IMAGENET1K_V1

fcn_resnet101

torchrun --nproc_per_node=8 train.py --lr 0.02 --dataset coco -b 4 --model fcn_resnet101 --aux-loss --weights-backbone ResNet101_Weights.IMAGENET1K_V1

deeplabv3_resnet50

torchrun --nproc_per_node=8 train.py --lr 0.02 --dataset coco -b 4 --model deeplabv3_resnet50 --aux-loss --weights-backbone ResNet50_Weights.IMAGENET1K_V1

deeplabv3_resnet101

torchrun --nproc_per_node=8 train.py --lr 0.02 --dataset coco -b 4 --model deeplabv3_resnet101 --aux-loss --weights-backbone ResNet101_Weights.IMAGENET1K_V1

deeplabv3_mobilenet_v3_large

torchrun --nproc_per_node=8 train.py --dataset coco -b 4 --model deeplabv3_mobilenet_v3_large --aux-loss --wd 0.000001 --weights-backbone MobileNet_V3_Large_Weights.IMAGENET1K_V1

lraspp_mobilenet_v3_large

torchrun --nproc_per_node=8 train.py --dataset coco -b 4 --model lraspp_mobilenet_v3_large --wd 0.000001 --weights-backbone MobileNet_V3_Large_Weights.IMAGENET1K_V1
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...