Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel
Sergii Dymchenko c35d3855cc
[TorchFix] Add weights_only to torch.load (#8105)
1 year ago
..
8e0d1b95e3
Fix incorrect recipe for SSDlite320 (#6536)
2 years ago
289fce29b3
Replace asserts with exceptions (#5587)
3 years ago
c486bb14ad
Update coco_utils.py (#7869)
2 years ago
bb3aae7b25
Add --backend and --use-v2 support to detection refs (#7732)
2 years ago
bdf16222f7
add support for instance checks on dataset wrappers (#7239)
2 years ago
d5f4cc38dc
Datapoint -> TVTensor; datapoint[s] -> tv_tensor[s] (#7894)
1 year ago
c35d3855cc
[TorchFix] Add weights_only to torch.load (#8105)
1 year ago
9f0afd5539
Replaced ConvertImageDtype by ToDtype in reference scripts (#7862)
2 years ago
d367a01a18
Use f-strings almost everywhere, and other cleanups by applying pyupgrade (#4585)
3 years ago

README.md

You have to be logged in to leave a comment. Sign In

Object detection reference training scripts

This folder contains reference training scripts for object detection. They serve as a log of how to train specific models, to provide baseline training and evaluation scripts to quickly bootstrap research.

To execute the example commands below you must install the following:

cython
pycocotools
matplotlib

You must modify the following flags:

--data-path=/path/to/coco/dataset

--nproc_per_node=<number_of_gpus_available>

Except otherwise noted, all models have been trained on 8x V100 GPUs.

Faster R-CNN ResNet-50 FPN

torchrun --nproc_per_node=8 train.py\
    --dataset coco --model fasterrcnn_resnet50_fpn --epochs 26\
    --lr-steps 16 22 --aspect-ratio-group-factor 3 --weights-backbone ResNet50_Weights.IMAGENET1K_V1

Faster R-CNN MobileNetV3-Large FPN

torchrun --nproc_per_node=8 train.py\
    --dataset coco --model fasterrcnn_mobilenet_v3_large_fpn --epochs 26\
    --lr-steps 16 22 --aspect-ratio-group-factor 3 --weights-backbone MobileNet_V3_Large_Weights.IMAGENET1K_V1

Faster R-CNN MobileNetV3-Large 320 FPN

torchrun --nproc_per_node=8 train.py\
    --dataset coco --model fasterrcnn_mobilenet_v3_large_320_fpn --epochs 26\
    --lr-steps 16 22 --aspect-ratio-group-factor 3 --weights-backbone MobileNet_V3_Large_Weights.IMAGENET1K_V1

FCOS ResNet-50 FPN

torchrun --nproc_per_node=8 train.py\
    --dataset coco --model fcos_resnet50_fpn --epochs 26\
    --lr-steps 16 22 --aspect-ratio-group-factor 3  --lr 0.01 --amp --weights-backbone ResNet50_Weights.IMAGENET1K_V1

RetinaNet

torchrun --nproc_per_node=8 train.py\
    --dataset coco --model retinanet_resnet50_fpn --epochs 26\
    --lr-steps 16 22 --aspect-ratio-group-factor 3 --lr 0.01 --weights-backbone ResNet50_Weights.IMAGENET1K_V1

SSD300 VGG16

torchrun --nproc_per_node=8 train.py\
    --dataset coco --model ssd300_vgg16 --epochs 120\
    --lr-steps 80 110 --aspect-ratio-group-factor 3 --lr 0.002 --batch-size 4\
    --weight-decay 0.0005 --data-augmentation ssd --weights-backbone VGG16_Weights.IMAGENET1K_FEATURES

SSDlite320 MobileNetV3-Large

torchrun --nproc_per_node=8 train.py\
    --dataset coco --model ssdlite320_mobilenet_v3_large --epochs 660\
    --aspect-ratio-group-factor 3 --lr-scheduler cosineannealinglr --lr 0.15 --batch-size 24\
    --weight-decay 0.00004 --data-augmentation ssdlite

Mask R-CNN

torchrun --nproc_per_node=8 train.py\
    --dataset coco --model maskrcnn_resnet50_fpn --epochs 26\
    --lr-steps 16 22 --aspect-ratio-group-factor 3 --weights-backbone ResNet50_Weights.IMAGENET1K_V1

Keypoint R-CNN

torchrun --nproc_per_node=8 train.py\
    --dataset coco_kp --model keypointrcnn_resnet50_fpn --epochs 46\
    --lr-steps 36 43 --aspect-ratio-group-factor 3 --weights-backbone ResNet50_Weights.IMAGENET1K_V1
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...