Are you sure you want to delete this access key?
This folder contains reference training scripts for object detection. They serve as a log of how to train specific models, to provide baseline training and evaluation scripts to quickly bootstrap research.
To execute the example commands below you must install the following:
cython
pycocotools
matplotlib
You must modify the following flags:
--data-path=/path/to/coco/dataset
--nproc_per_node=<number_of_gpus_available>
Except otherwise noted, all models have been trained on 8x V100 GPUs.
torchrun --nproc_per_node=8 train.py\
--dataset coco --model fasterrcnn_resnet50_fpn --epochs 26\
--lr-steps 16 22 --aspect-ratio-group-factor 3 --weights-backbone ResNet50_Weights.IMAGENET1K_V1
torchrun --nproc_per_node=8 train.py\
--dataset coco --model fasterrcnn_mobilenet_v3_large_fpn --epochs 26\
--lr-steps 16 22 --aspect-ratio-group-factor 3 --weights-backbone MobileNet_V3_Large_Weights.IMAGENET1K_V1
torchrun --nproc_per_node=8 train.py\
--dataset coco --model fasterrcnn_mobilenet_v3_large_320_fpn --epochs 26\
--lr-steps 16 22 --aspect-ratio-group-factor 3 --weights-backbone MobileNet_V3_Large_Weights.IMAGENET1K_V1
torchrun --nproc_per_node=8 train.py\
--dataset coco --model fcos_resnet50_fpn --epochs 26\
--lr-steps 16 22 --aspect-ratio-group-factor 3 --lr 0.01 --amp --weights-backbone ResNet50_Weights.IMAGENET1K_V1
torchrun --nproc_per_node=8 train.py\
--dataset coco --model retinanet_resnet50_fpn --epochs 26\
--lr-steps 16 22 --aspect-ratio-group-factor 3 --lr 0.01 --weights-backbone ResNet50_Weights.IMAGENET1K_V1
torchrun --nproc_per_node=8 train.py\
--dataset coco --model ssd300_vgg16 --epochs 120\
--lr-steps 80 110 --aspect-ratio-group-factor 3 --lr 0.002 --batch-size 4\
--weight-decay 0.0005 --data-augmentation ssd --weights-backbone VGG16_Weights.IMAGENET1K_FEATURES
torchrun --nproc_per_node=8 train.py\
--dataset coco --model ssdlite320_mobilenet_v3_large --epochs 660\
--aspect-ratio-group-factor 3 --lr-scheduler cosineannealinglr --lr 0.15 --batch-size 24\
--weight-decay 0.00004 --data-augmentation ssdlite
torchrun --nproc_per_node=8 train.py\
--dataset coco --model maskrcnn_resnet50_fpn --epochs 26\
--lr-steps 16 22 --aspect-ratio-group-factor 3 --weights-backbone ResNet50_Weights.IMAGENET1K_V1
torchrun --nproc_per_node=8 train.py\
--dataset coco_kp --model keypointrcnn_resnet50_fpn --epochs 46\
--lr-steps 36 43 --aspect-ratio-group-factor 3 --weights-backbone ResNet50_Weights.IMAGENET1K_V1
Press p or to see the previous file or, n or to see the next file
Are you sure you want to delete this access key?
Are you sure you want to delete this access key?
Are you sure you want to delete this access key?
Are you sure you want to delete this access key?