1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
|
- .. _models:
- Models and pre-trained weights
- ##############################
- The ``torchvision.models`` subpackage contains definitions of models for addressing
- different tasks, including: image classification, pixelwise semantic
- segmentation, object detection, instance segmentation, person
- keypoint detection, video classification, and optical flow.
- General information on pre-trained weights
- ==========================================
- TorchVision offers pre-trained weights for every provided architecture, using
- the PyTorch :mod:`torch.hub`. Instancing a pre-trained model will download its
- weights to a cache directory. This directory can be set using the `TORCH_HOME`
- environment variable. See :func:`torch.hub.load_state_dict_from_url` for details.
- .. note::
- The pre-trained models provided in this library may have their own licenses or
- terms and conditions derived from the dataset used for training. It is your
- responsibility to determine whether you have permission to use the models for
- your use case.
- .. note ::
- Backward compatibility is guaranteed for loading a serialized
- ``state_dict`` to the model created using old PyTorch version.
- On the contrary, loading entire saved models or serialized
- ``ScriptModules`` (serialized using older versions of PyTorch)
- may not preserve the historic behaviour. Refer to the following
- `documentation
- <https://pytorch.org/docs/stable/notes/serialization.html#id6>`_
- Initializing pre-trained models
- -------------------------------
- As of v0.13, TorchVision offers a new `Multi-weight support API
- <https://pytorch.org/blog/introducing-torchvision-new-multi-weight-support-api/>`_
- for loading different weights to the existing model builder methods:
- .. code:: python
- from torchvision.models import resnet50, ResNet50_Weights
- # Old weights with accuracy 76.130%
- resnet50(weights=ResNet50_Weights.IMAGENET1K_V1)
- # New weights with accuracy 80.858%
- resnet50(weights=ResNet50_Weights.IMAGENET1K_V2)
- # Best available weights (currently alias for IMAGENET1K_V2)
- # Note that these weights may change across versions
- resnet50(weights=ResNet50_Weights.DEFAULT)
- # Strings are also supported
- resnet50(weights="IMAGENET1K_V2")
- # No weights - random initialization
- resnet50(weights=None)
- Migrating to the new API is very straightforward. The following method calls between the 2 APIs are all equivalent:
- .. code:: python
- from torchvision.models import resnet50, ResNet50_Weights
- # Using pretrained weights:
- resnet50(weights=ResNet50_Weights.IMAGENET1K_V1)
- resnet50(weights="IMAGENET1K_V1")
- resnet50(pretrained=True) # deprecated
- resnet50(True) # deprecated
- # Using no weights:
- resnet50(weights=None)
- resnet50()
- resnet50(pretrained=False) # deprecated
- resnet50(False) # deprecated
- Note that the ``pretrained`` parameter is now deprecated, using it will emit warnings and will be removed on v0.15.
- Using the pre-trained models
- ----------------------------
- Before using the pre-trained models, one must preprocess the image
- (resize with right resolution/interpolation, apply inference transforms,
- rescale the values etc). There is no standard way to do this as it depends on
- how a given model was trained. It can vary across model families, variants or
- even weight versions. Using the correct preprocessing method is critical and
- failing to do so may lead to decreased accuracy or incorrect outputs.
- All the necessary information for the inference transforms of each pre-trained
- model is provided on its weights documentation. To simplify inference, TorchVision
- bundles the necessary preprocessing transforms into each model weight. These are
- accessible via the ``weight.transforms`` attribute:
- .. code:: python
- # Initialize the Weight Transforms
- weights = ResNet50_Weights.DEFAULT
- preprocess = weights.transforms()
- # Apply it to the input image
- img_transformed = preprocess(img)
- Some models use modules which have different training and evaluation
- behavior, such as batch normalization. To switch between these modes, use
- ``model.train()`` or ``model.eval()`` as appropriate. See
- :meth:`~torch.nn.Module.train` or :meth:`~torch.nn.Module.eval` for details.
- .. code:: python
- # Initialize model
- weights = ResNet50_Weights.DEFAULT
- model = resnet50(weights=weights)
- # Set model to eval mode
- model.eval()
- Listing and retrieving available models
- ---------------------------------------
- As of v0.14, TorchVision offers a new mechanism which allows listing and
- retrieving models and weights by their names. Here are a few examples on how to
- use them:
- .. code:: python
- # List available models
- all_models = list_models()
- classification_models = list_models(module=torchvision.models)
- # Initialize models
- m1 = get_model("mobilenet_v3_large", weights=None)
- m2 = get_model("quantized_mobilenet_v3_large", weights="DEFAULT")
- # Fetch weights
- weights = get_weight("MobileNet_V3_Large_QuantizedWeights.DEFAULT")
- assert weights == MobileNet_V3_Large_QuantizedWeights.DEFAULT
- weights_enum = get_model_weights("quantized_mobilenet_v3_large")
- assert weights_enum == MobileNet_V3_Large_QuantizedWeights
- weights_enum2 = get_model_weights(torchvision.models.quantization.mobilenet_v3_large)
- assert weights_enum == weights_enum2
- Here are the available public functions to retrieve models and their corresponding weights:
- .. currentmodule:: torchvision.models
- .. autosummary::
- :toctree: generated/
- :template: function.rst
- get_model
- get_model_weights
- get_weight
- list_models
- Using models from Hub
- ---------------------
- Most pre-trained models can be accessed directly via PyTorch Hub without having TorchVision installed:
- .. code:: python
- import torch
- # Option 1: passing weights param as string
- model = torch.hub.load("pytorch/vision", "resnet50", weights="IMAGENET1K_V2")
- # Option 2: passing weights param as enum
- weights = torch.hub.load(
- "pytorch/vision",
- "get_weight",
- weights="ResNet50_Weights.IMAGENET1K_V2",
- )
- model = torch.hub.load("pytorch/vision", "resnet50", weights=weights)
- You can also retrieve all the available weights of a specific model via PyTorch Hub by doing:
- .. code:: python
- import torch
- weight_enum = torch.hub.load("pytorch/vision", "get_model_weights", name="resnet50")
- print([weight for weight in weight_enum])
- The only exception to the above are the detection models included on
- :mod:`torchvision.models.detection`. These models require TorchVision
- to be installed because they depend on custom C++ operators.
- Classification
- ==============
- .. currentmodule:: torchvision.models
- The following classification models are available, with or without pre-trained
- weights:
- .. toctree::
- :maxdepth: 1
- models/alexnet
- models/convnext
- models/densenet
- models/efficientnet
- models/efficientnetv2
- models/googlenet
- models/inception
- models/maxvit
- models/mnasnet
- models/mobilenetv2
- models/mobilenetv3
- models/regnet
- models/resnet
- models/resnext
- models/shufflenetv2
- models/squeezenet
- models/swin_transformer
- models/vgg
- models/vision_transformer
- models/wide_resnet
- |
- Here is an example of how to use the pre-trained image classification models:
- .. code:: python
- from torchvision.io import decode_image
- from torchvision.models import resnet50, ResNet50_Weights
- img = decode_image("test/assets/encode_jpeg/grace_hopper_517x606.jpg")
- # Step 1: Initialize model with the best available weights
- weights = ResNet50_Weights.DEFAULT
- model = resnet50(weights=weights)
- model.eval()
- # Step 2: Initialize the inference transforms
- preprocess = weights.transforms()
- # Step 3: Apply inference preprocessing transforms
- batch = preprocess(img).unsqueeze(0)
- # Step 4: Use the model and print the predicted category
- prediction = model(batch).squeeze(0).softmax(0)
- class_id = prediction.argmax().item()
- score = prediction[class_id].item()
- category_name = weights.meta["categories"][class_id]
- print(f"{category_name}: {100 * score:.1f}%")
- The classes of the pre-trained model outputs can be found at ``weights.meta["categories"]``.
- Table of all available classification weights
- ---------------------------------------------
- Accuracies are reported on ImageNet-1K using single crops:
- .. include:: generated/classification_table.rst
- Quantized models
- ----------------
- .. currentmodule:: torchvision.models.quantization
- The following architectures provide support for INT8 quantized models, with or without
- pre-trained weights:
- .. toctree::
- :maxdepth: 1
- models/googlenet_quant
- models/inception_quant
- models/mobilenetv2_quant
- models/mobilenetv3_quant
- models/resnet_quant
- models/resnext_quant
- models/shufflenetv2_quant
- |
- Here is an example of how to use the pre-trained quantized image classification models:
- .. code:: python
- from torchvision.io import decode_image
- from torchvision.models.quantization import resnet50, ResNet50_QuantizedWeights
- img = decode_image("test/assets/encode_jpeg/grace_hopper_517x606.jpg")
- # Step 1: Initialize model with the best available weights
- weights = ResNet50_QuantizedWeights.DEFAULT
- model = resnet50(weights=weights, quantize=True)
- model.eval()
- # Step 2: Initialize the inference transforms
- preprocess = weights.transforms()
- # Step 3: Apply inference preprocessing transforms
- batch = preprocess(img).unsqueeze(0)
- # Step 4: Use the model and print the predicted category
- prediction = model(batch).squeeze(0).softmax(0)
- class_id = prediction.argmax().item()
- score = prediction[class_id].item()
- category_name = weights.meta["categories"][class_id]
- print(f"{category_name}: {100 * score}%")
- The classes of the pre-trained model outputs can be found at ``weights.meta["categories"]``.
- Table of all available quantized classification weights
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Accuracies are reported on ImageNet-1K using single crops:
- .. include:: generated/classification_quant_table.rst
- Semantic Segmentation
- =====================
- .. currentmodule:: torchvision.models.segmentation
- .. betastatus:: segmentation module
- The following semantic segmentation models are available, with or without
- pre-trained weights:
- .. toctree::
- :maxdepth: 1
- models/deeplabv3
- models/fcn
- models/lraspp
- |
- Here is an example of how to use the pre-trained semantic segmentation models:
- .. code:: python
- from torchvision.io.image import decode_image
- from torchvision.models.segmentation import fcn_resnet50, FCN_ResNet50_Weights
- from torchvision.transforms.functional import to_pil_image
- img = decode_image("gallery/assets/dog1.jpg")
- # Step 1: Initialize model with the best available weights
- weights = FCN_ResNet50_Weights.DEFAULT
- model = fcn_resnet50(weights=weights)
- model.eval()
- # Step 2: Initialize the inference transforms
- preprocess = weights.transforms()
- # Step 3: Apply inference preprocessing transforms
- batch = preprocess(img).unsqueeze(0)
- # Step 4: Use the model and visualize the prediction
- prediction = model(batch)["out"]
- normalized_masks = prediction.softmax(dim=1)
- class_to_idx = {cls: idx for (idx, cls) in enumerate(weights.meta["categories"])}
- mask = normalized_masks[0, class_to_idx["dog"]]
- to_pil_image(mask).show()
- The classes of the pre-trained model outputs can be found at ``weights.meta["categories"]``.
- The output format of the models is illustrated in :ref:`semantic_seg_output`.
- Table of all available semantic segmentation weights
- ----------------------------------------------------
- All models are evaluated a subset of COCO val2017, on the 20 categories that are present in the Pascal VOC dataset:
- .. include:: generated/segmentation_table.rst
- .. _object_det_inst_seg_pers_keypoint_det:
- Object Detection, Instance Segmentation and Person Keypoint Detection
- =====================================================================
- The pre-trained models for detection, instance segmentation and
- keypoint detection are initialized with the classification models
- in torchvision. The models expect a list of ``Tensor[C, H, W]``.
- Check the constructor of the models for more information.
- .. betastatus:: detection module
- Object Detection
- ----------------
- .. currentmodule:: torchvision.models.detection
- The following object detection models are available, with or without pre-trained
- weights:
- .. toctree::
- :maxdepth: 1
- models/faster_rcnn
- models/fcos
- models/retinanet
- models/ssd
- models/ssdlite
- |
- Here is an example of how to use the pre-trained object detection models:
- .. code:: python
- from torchvision.io.image import decode_image
- from torchvision.models.detection import fasterrcnn_resnet50_fpn_v2, FasterRCNN_ResNet50_FPN_V2_Weights
- from torchvision.utils import draw_bounding_boxes
- from torchvision.transforms.functional import to_pil_image
- img = decode_image("test/assets/encode_jpeg/grace_hopper_517x606.jpg")
- # Step 1: Initialize model with the best available weights
- weights = FasterRCNN_ResNet50_FPN_V2_Weights.DEFAULT
- model = fasterrcnn_resnet50_fpn_v2(weights=weights, box_score_thresh=0.9)
- model.eval()
- # Step 2: Initialize the inference transforms
- preprocess = weights.transforms()
- # Step 3: Apply inference preprocessing transforms
- batch = [preprocess(img)]
- # Step 4: Use the model and visualize the prediction
- prediction = model(batch)[0]
- labels = [weights.meta["categories"][i] for i in prediction["labels"]]
- box = draw_bounding_boxes(img, boxes=prediction["boxes"],
- labels=labels,
- colors="red",
- width=4, font_size=30)
- im = to_pil_image(box.detach())
- im.show()
- The classes of the pre-trained model outputs can be found at ``weights.meta["categories"]``.
- For details on how to plot the bounding boxes of the models, you may refer to :ref:`instance_seg_output`.
- Table of all available Object detection weights
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Box MAPs are reported on COCO val2017:
- .. include:: generated/detection_table.rst
- Instance Segmentation
- ---------------------
- .. currentmodule:: torchvision.models.detection
- The following instance segmentation models are available, with or without pre-trained
- weights:
- .. toctree::
- :maxdepth: 1
- models/mask_rcnn
- |
- For details on how to plot the masks of the models, you may refer to :ref:`instance_seg_output`.
- Table of all available Instance segmentation weights
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Box and Mask MAPs are reported on COCO val2017:
- .. include:: generated/instance_segmentation_table.rst
- Keypoint Detection
- ------------------
- .. currentmodule:: torchvision.models.detection
- The following person keypoint detection models are available, with or without
- pre-trained weights:
- .. toctree::
- :maxdepth: 1
- models/keypoint_rcnn
- |
- The classes of the pre-trained model outputs can be found at ``weights.meta["keypoint_names"]``.
- For details on how to plot the bounding boxes of the models, you may refer to :ref:`keypoint_output`.
- Table of all available Keypoint detection weights
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Box and Keypoint MAPs are reported on COCO val2017:
- .. include:: generated/detection_keypoint_table.rst
- Video Classification
- ====================
- .. currentmodule:: torchvision.models.video
- .. betastatus:: video module
- The following video classification models are available, with or without
- pre-trained weights:
- .. toctree::
- :maxdepth: 1
- models/video_mvit
- models/video_resnet
- models/video_s3d
- models/video_swin_transformer
- |
- Here is an example of how to use the pre-trained video classification models:
- .. code:: python
- from torchvision.io.video import read_video
- from torchvision.models.video import r3d_18, R3D_18_Weights
- vid, _, _ = read_video("test/assets/videos/v_SoccerJuggling_g23_c01.avi", output_format="TCHW")
- vid = vid[:32] # optionally shorten duration
- # Step 1: Initialize model with the best available weights
- weights = R3D_18_Weights.DEFAULT
- model = r3d_18(weights=weights)
- model.eval()
- # Step 2: Initialize the inference transforms
- preprocess = weights.transforms()
- # Step 3: Apply inference preprocessing transforms
- batch = preprocess(vid).unsqueeze(0)
- # Step 4: Use the model and print the predicted category
- prediction = model(batch).squeeze(0).softmax(0)
- label = prediction.argmax().item()
- score = prediction[label].item()
- category_name = weights.meta["categories"][label]
- print(f"{category_name}: {100 * score}%")
- The classes of the pre-trained model outputs can be found at ``weights.meta["categories"]``.
- Table of all available video classification weights
- ---------------------------------------------------
- Accuracies are reported on Kinetics-400 using single crops for clip length 16:
- .. include:: generated/video_table.rst
- Optical Flow
- ============
- .. currentmodule:: torchvision.models.optical_flow
- The following Optical Flow models are available, with or without pre-trained
- .. toctree::
- :maxdepth: 1
- models/raft
|