1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
|
- import math
- from typing import cast, Iterator, List, Optional, Sized, Union
- import torch
- import torch.distributed as dist
- from torch.utils.data import Sampler
- from torchvision.datasets.video_utils import VideoClips
- class DistributedSampler(Sampler):
- """
- Extension of DistributedSampler, as discussed in
- https://github.com/pytorch/pytorch/issues/23430
- Example:
- dataset: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
- num_replicas: 4
- shuffle: False
- when group_size = 1
- RANK | shard_dataset
- =========================
- rank_0 | [0, 4, 8, 12]
- rank_1 | [1, 5, 9, 13]
- rank_2 | [2, 6, 10, 0]
- rank_3 | [3, 7, 11, 1]
- when group_size = 2
- RANK | shard_dataset
- =========================
- rank_0 | [0, 1, 8, 9]
- rank_1 | [2, 3, 10, 11]
- rank_2 | [4, 5, 12, 13]
- rank_3 | [6, 7, 0, 1]
- """
- def __init__(
- self,
- dataset: Sized,
- num_replicas: Optional[int] = None,
- rank: Optional[int] = None,
- shuffle: bool = False,
- group_size: int = 1,
- ) -> None:
- if num_replicas is None:
- if not dist.is_available():
- raise RuntimeError("Requires distributed package to be available")
- num_replicas = dist.get_world_size()
- if rank is None:
- if not dist.is_available():
- raise RuntimeError("Requires distributed package to be available")
- rank = dist.get_rank()
- if len(dataset) % group_size != 0:
- raise ValueError(
- f"dataset length must be a multiplier of group size dataset length: {len(dataset)}, group size: {group_size}"
- )
- self.dataset = dataset
- self.group_size = group_size
- self.num_replicas = num_replicas
- self.rank = rank
- self.epoch = 0
- dataset_group_length = len(dataset) // group_size
- self.num_group_samples = int(math.ceil(dataset_group_length * 1.0 / self.num_replicas))
- self.num_samples = self.num_group_samples * group_size
- self.total_size = self.num_samples * self.num_replicas
- self.shuffle = shuffle
- def __iter__(self) -> Iterator[int]:
- # deterministically shuffle based on epoch
- g = torch.Generator()
- g.manual_seed(self.epoch)
- indices: Union[torch.Tensor, List[int]]
- if self.shuffle:
- indices = torch.randperm(len(self.dataset), generator=g).tolist()
- else:
- indices = list(range(len(self.dataset)))
- # add extra samples to make it evenly divisible
- indices += indices[: (self.total_size - len(indices))]
- assert len(indices) == self.total_size
- total_group_size = self.total_size // self.group_size
- indices = torch.reshape(torch.LongTensor(indices), (total_group_size, self.group_size))
- # subsample
- indices = indices[self.rank : total_group_size : self.num_replicas, :]
- indices = torch.reshape(indices, (-1,)).tolist()
- assert len(indices) == self.num_samples
- if isinstance(self.dataset, Sampler):
- orig_indices = list(iter(self.dataset))
- indices = [orig_indices[i] for i in indices]
- return iter(indices)
- def __len__(self) -> int:
- return self.num_samples
- def set_epoch(self, epoch: int) -> None:
- self.epoch = epoch
- class UniformClipSampler(Sampler):
- """
- Sample `num_video_clips_per_video` clips for each video, equally spaced.
- When number of unique clips in the video is fewer than num_video_clips_per_video,
- repeat the clips until `num_video_clips_per_video` clips are collected
- Args:
- video_clips (VideoClips): video clips to sample from
- num_clips_per_video (int): number of clips to be sampled per video
- """
- def __init__(self, video_clips: VideoClips, num_clips_per_video: int) -> None:
- if not isinstance(video_clips, VideoClips):
- raise TypeError(f"Expected video_clips to be an instance of VideoClips, got {type(video_clips)}")
- self.video_clips = video_clips
- self.num_clips_per_video = num_clips_per_video
- def __iter__(self) -> Iterator[int]:
- idxs = []
- s = 0
- # select num_clips_per_video for each video, uniformly spaced
- for c in self.video_clips.clips:
- length = len(c)
- if length == 0:
- # corner case where video decoding fails
- continue
- sampled = torch.linspace(s, s + length - 1, steps=self.num_clips_per_video).floor().to(torch.int64)
- s += length
- idxs.append(sampled)
- return iter(cast(List[int], torch.cat(idxs).tolist()))
- def __len__(self) -> int:
- return sum(self.num_clips_per_video for c in self.video_clips.clips if len(c) > 0)
- class RandomClipSampler(Sampler):
- """
- Samples at most `max_video_clips_per_video` clips for each video randomly
- Args:
- video_clips (VideoClips): video clips to sample from
- max_clips_per_video (int): maximum number of clips to be sampled per video
- """
- def __init__(self, video_clips: VideoClips, max_clips_per_video: int) -> None:
- if not isinstance(video_clips, VideoClips):
- raise TypeError(f"Expected video_clips to be an instance of VideoClips, got {type(video_clips)}")
- self.video_clips = video_clips
- self.max_clips_per_video = max_clips_per_video
- def __iter__(self) -> Iterator[int]:
- idxs = []
- s = 0
- # select at most max_clips_per_video for each video, randomly
- for c in self.video_clips.clips:
- length = len(c)
- size = min(length, self.max_clips_per_video)
- sampled = torch.randperm(length)[:size] + s
- s += length
- idxs.append(sampled)
- idxs_ = torch.cat(idxs)
- # shuffle all clips randomly
- perm = torch.randperm(len(idxs_))
- return iter(idxs_[perm].tolist())
- def __len__(self) -> int:
- return sum(min(len(c), self.max_clips_per_video) for c in self.video_clips.clips)
|