1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
|
- import io
- import os.path
- import pickle
- import string
- from collections.abc import Iterable
- from pathlib import Path
- from typing import Any, Callable, cast, List, Optional, Tuple, Union
- from PIL import Image
- from .utils import iterable_to_str, verify_str_arg
- from .vision import VisionDataset
- class LSUNClass(VisionDataset):
- def __init__(
- self, root: str, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None
- ) -> None:
- import lmdb
- super().__init__(root, transform=transform, target_transform=target_transform)
- self.env = lmdb.open(root, max_readers=1, readonly=True, lock=False, readahead=False, meminit=False)
- with self.env.begin(write=False) as txn:
- self.length = txn.stat()["entries"]
- cache_file = "_cache_" + "".join(c for c in root if c in string.ascii_letters)
- if os.path.isfile(cache_file):
- self.keys = pickle.load(open(cache_file, "rb"))
- else:
- with self.env.begin(write=False) as txn:
- self.keys = [key for key in txn.cursor().iternext(keys=True, values=False)]
- pickle.dump(self.keys, open(cache_file, "wb"))
- def __getitem__(self, index: int) -> Tuple[Any, Any]:
- img, target = None, None
- env = self.env
- with env.begin(write=False) as txn:
- imgbuf = txn.get(self.keys[index])
- buf = io.BytesIO()
- buf.write(imgbuf)
- buf.seek(0)
- img = Image.open(buf).convert("RGB")
- if self.transform is not None:
- img = self.transform(img)
- if self.target_transform is not None:
- target = self.target_transform(target)
- return img, target
- def __len__(self) -> int:
- return self.length
- class LSUN(VisionDataset):
- """`LSUN <https://paperswithcode.com/dataset/lsun>`_ dataset.
- You will need to install the ``lmdb`` package to use this dataset: run
- ``pip install lmdb``
- Args:
- root (str or ``pathlib.Path``): Root directory for the database files.
- classes (string or list): One of {'train', 'val', 'test'} or a list of
- categories to load. e,g. ['bedroom_train', 'church_outdoor_train'].
- transform (callable, optional): A function/transform that takes in a PIL image
- and returns a transformed version. E.g, ``transforms.RandomCrop``
- target_transform (callable, optional): A function/transform that takes in the
- target and transforms it.
- """
- def __init__(
- self,
- root: Union[str, Path],
- classes: Union[str, List[str]] = "train",
- transform: Optional[Callable] = None,
- target_transform: Optional[Callable] = None,
- ) -> None:
- super().__init__(root, transform=transform, target_transform=target_transform)
- self.classes = self._verify_classes(classes)
- # for each class, create an LSUNClassDataset
- self.dbs = []
- for c in self.classes:
- self.dbs.append(LSUNClass(root=os.path.join(root, f"{c}_lmdb"), transform=transform))
- self.indices = []
- count = 0
- for db in self.dbs:
- count += len(db)
- self.indices.append(count)
- self.length = count
- def _verify_classes(self, classes: Union[str, List[str]]) -> List[str]:
- categories = [
- "bedroom",
- "bridge",
- "church_outdoor",
- "classroom",
- "conference_room",
- "dining_room",
- "kitchen",
- "living_room",
- "restaurant",
- "tower",
- ]
- dset_opts = ["train", "val", "test"]
- try:
- classes = cast(str, classes)
- verify_str_arg(classes, "classes", dset_opts)
- if classes == "test":
- classes = [classes]
- else:
- classes = [c + "_" + classes for c in categories]
- except ValueError:
- if not isinstance(classes, Iterable):
- msg = "Expected type str or Iterable for argument classes, but got type {}."
- raise ValueError(msg.format(type(classes)))
- classes = list(classes)
- msg_fmtstr_type = "Expected type str for elements in argument classes, but got type {}."
- for c in classes:
- verify_str_arg(c, custom_msg=msg_fmtstr_type.format(type(c)))
- c_short = c.split("_")
- category, dset_opt = "_".join(c_short[:-1]), c_short[-1]
- msg_fmtstr = "Unknown value '{}' for {}. Valid values are {{{}}}."
- msg = msg_fmtstr.format(category, "LSUN class", iterable_to_str(categories))
- verify_str_arg(category, valid_values=categories, custom_msg=msg)
- msg = msg_fmtstr.format(dset_opt, "postfix", iterable_to_str(dset_opts))
- verify_str_arg(dset_opt, valid_values=dset_opts, custom_msg=msg)
- return classes
- def __getitem__(self, index: int) -> Tuple[Any, Any]:
- """
- Args:
- index (int): Index
- Returns:
- tuple: Tuple (image, target) where target is the index of the target category.
- """
- target = 0
- sub = 0
- for ind in self.indices:
- if index < ind:
- break
- target += 1
- sub = ind
- db = self.dbs[target]
- index = index - sub
- if self.target_transform is not None:
- target = self.target_transform(target)
- img, _ = db[index]
- return img, target
- def __len__(self) -> int:
- return self.length
- def extra_repr(self) -> str:
- return "Classes: {classes}".format(**self.__dict__)
|