1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
|
- import os
- from collections import defaultdict
- from numbers import Number
- from typing import Any, List
- import torch
- from torch.utils._python_dispatch import TorchDispatchMode
- from torch.utils._pytree import tree_map
- from torchvision.models._api import Weights
- aten = torch.ops.aten
- quantized = torch.ops.quantized
- def get_shape(i):
- if isinstance(i, torch.Tensor):
- return i.shape
- elif hasattr(i, "weight"):
- return i.weight().shape
- else:
- raise ValueError(f"Unknown type {type(i)}")
- def prod(x):
- res = 1
- for i in x:
- res *= i
- return res
- def matmul_flop(inputs: List[Any], outputs: List[Any]) -> Number:
- """
- Count flops for matmul.
- """
- # Inputs should be a list of length 2.
- # Inputs contains the shapes of two matrices.
- input_shapes = [get_shape(v) for v in inputs]
- assert len(input_shapes) == 2, input_shapes
- assert input_shapes[0][-1] == input_shapes[1][-2], input_shapes
- flop = prod(input_shapes[0]) * input_shapes[-1][-1]
- return flop
- def addmm_flop(inputs: List[Any], outputs: List[Any]) -> Number:
- """
- Count flops for fully connected layers.
- """
- # Count flop for nn.Linear
- # inputs is a list of length 3.
- input_shapes = [get_shape(v) for v in inputs[1:3]]
- # input_shapes[0]: [batch size, input feature dimension]
- # input_shapes[1]: [batch size, output feature dimension]
- assert len(input_shapes[0]) == 2, input_shapes[0]
- assert len(input_shapes[1]) == 2, input_shapes[1]
- batch_size, input_dim = input_shapes[0]
- output_dim = input_shapes[1][1]
- flops = batch_size * input_dim * output_dim
- return flops
- def bmm_flop(inputs: List[Any], outputs: List[Any]) -> Number:
- """
- Count flops for the bmm operation.
- """
- # Inputs should be a list of length 2.
- # Inputs contains the shapes of two tensor.
- assert len(inputs) == 2, len(inputs)
- input_shapes = [get_shape(v) for v in inputs]
- n, c, t = input_shapes[0]
- d = input_shapes[-1][-1]
- flop = n * c * t * d
- return flop
- def conv_flop_count(
- x_shape: List[int],
- w_shape: List[int],
- out_shape: List[int],
- transposed: bool = False,
- ) -> Number:
- """
- Count flops for convolution. Note only multiplication is
- counted. Computation for addition and bias is ignored.
- Flops for a transposed convolution are calculated as
- flops = (x_shape[2:] * prod(w_shape) * batch_size).
- Args:
- x_shape (list(int)): The input shape before convolution.
- w_shape (list(int)): The filter shape.
- out_shape (list(int)): The output shape after convolution.
- transposed (bool): is the convolution transposed
- Returns:
- int: the number of flops
- """
- batch_size = x_shape[0]
- conv_shape = (x_shape if transposed else out_shape)[2:]
- flop = batch_size * prod(w_shape) * prod(conv_shape)
- return flop
- def conv_flop(inputs: List[Any], outputs: List[Any]):
- """
- Count flops for convolution.
- """
- x, w = inputs[:2]
- x_shape, w_shape, out_shape = (get_shape(x), get_shape(w), get_shape(outputs[0]))
- transposed = inputs[6]
- return conv_flop_count(x_shape, w_shape, out_shape, transposed=transposed)
- def quant_conv_flop(inputs: List[Any], outputs: List[Any]):
- """
- Count flops for quantized convolution.
- """
- x, w = inputs[:2]
- x_shape, w_shape, out_shape = (get_shape(x), get_shape(w), get_shape(outputs[0]))
- return conv_flop_count(x_shape, w_shape, out_shape, transposed=False)
- def transpose_shape(shape):
- return [shape[1], shape[0]] + list(shape[2:])
- def conv_backward_flop(inputs: List[Any], outputs: List[Any]):
- grad_out_shape, x_shape, w_shape = [get_shape(i) for i in inputs[:3]]
- output_mask = inputs[-1]
- fwd_transposed = inputs[7]
- flop_count = 0
- if output_mask[0]:
- grad_input_shape = get_shape(outputs[0])
- flop_count += conv_flop_count(grad_out_shape, w_shape, grad_input_shape, not fwd_transposed)
- if output_mask[1]:
- grad_weight_shape = get_shape(outputs[1])
- flop_count += conv_flop_count(transpose_shape(x_shape), grad_out_shape, grad_weight_shape, fwd_transposed)
- return flop_count
- def scaled_dot_product_flash_attention_flop(inputs: List[Any], outputs: List[Any]):
- # FIXME: this needs to count the flops of this kernel
- # https://github.com/pytorch/pytorch/blob/207b06d099def9d9476176a1842e88636c1f714f/aten/src/ATen/native/cpu/FlashAttentionKernel.cpp#L52-L267
- return 0
- flop_mapping = {
- aten.mm: matmul_flop,
- aten.matmul: matmul_flop,
- aten.addmm: addmm_flop,
- aten.bmm: bmm_flop,
- aten.convolution: conv_flop,
- aten._convolution: conv_flop,
- aten.convolution_backward: conv_backward_flop,
- quantized.conv2d: quant_conv_flop,
- quantized.conv2d_relu: quant_conv_flop,
- aten._scaled_dot_product_flash_attention: scaled_dot_product_flash_attention_flop,
- }
- unmapped_ops = set()
- def normalize_tuple(x):
- if not isinstance(x, tuple):
- return (x,)
- return x
- class FlopCounterMode(TorchDispatchMode):
- def __init__(self, model=None):
- self.flop_counts = defaultdict(lambda: defaultdict(int))
- self.parents = ["Global"]
- # global mod
- if model is not None:
- for name, module in dict(model.named_children()).items():
- module.register_forward_pre_hook(self.enter_module(name))
- module.register_forward_hook(self.exit_module(name))
- def enter_module(self, name):
- def f(module, inputs):
- self.parents.append(name)
- inputs = normalize_tuple(inputs)
- out = self.create_backwards_pop(name)(*inputs)
- return out
- return f
- def exit_module(self, name):
- def f(module, inputs, outputs):
- assert self.parents[-1] == name
- self.parents.pop()
- outputs = normalize_tuple(outputs)
- return self.create_backwards_push(name)(*outputs)
- return f
- def create_backwards_push(self, name):
- class PushState(torch.autograd.Function):
- @staticmethod
- def forward(ctx, *args):
- args = tree_map(lambda x: x.clone() if isinstance(x, torch.Tensor) else x, args)
- if len(args) == 1:
- return args[0]
- return args
- @staticmethod
- def backward(ctx, *grad_outs):
- self.parents.append(name)
- return grad_outs
- return PushState.apply
- def create_backwards_pop(self, name):
- class PopState(torch.autograd.Function):
- @staticmethod
- def forward(ctx, *args):
- args = tree_map(lambda x: x.clone() if isinstance(x, torch.Tensor) else x, args)
- if len(args) == 1:
- return args[0]
- return args
- @staticmethod
- def backward(ctx, *grad_outs):
- assert self.parents[-1] == name
- self.parents.pop()
- return grad_outs
- return PopState.apply
- def __enter__(self):
- self.flop_counts.clear()
- super().__enter__()
- def __exit__(self, *args):
- # print(f"Total: {sum(self.flop_counts['Global'].values()) / 1e9} GFLOPS")
- # for mod in self.flop_counts.keys():
- # print(f"Module: ", mod)
- # for k, v in self.flop_counts[mod].items():
- # print(f"{k}: {v / 1e9} GFLOPS")
- # print()
- super().__exit__(*args)
- def __torch_dispatch__(self, func, types, args=(), kwargs=None):
- kwargs = kwargs if kwargs else {}
- out = func(*args, **kwargs)
- func_packet = func._overloadpacket
- if func_packet in flop_mapping:
- flop_count = flop_mapping[func_packet](args, normalize_tuple(out))
- for par in self.parents:
- self.flop_counts[par][func_packet] += flop_count
- else:
- unmapped_ops.add(func_packet)
- return out
- def get_flops(self):
- return sum(self.flop_counts["Global"].values()) / 1e9
- def get_dims(module_name, height, width):
- # detection models have curated input sizes
- if module_name == "detection":
- # we can feed a batch of 1 for detection model instead of a list of 1 image
- dims = (3, height, width)
- elif module_name == "video":
- # hard-coding the time dimension to size 16
- dims = (1, 16, 3, height, width)
- else:
- dims = (1, 3, height, width)
- return dims
- def get_ops(model: torch.nn.Module, weight: Weights, height=512, width=512):
- module_name = model.__module__.split(".")[-2]
- dims = get_dims(module_name=module_name, height=height, width=width)
- input_tensor = torch.randn(dims)
- # try:
- preprocess = weight.transforms()
- if module_name == "optical_flow":
- inp = preprocess(input_tensor, input_tensor)
- else:
- # hack to enable mod(*inp) for optical_flow models
- inp = [preprocess(input_tensor)]
- model.eval()
- flop_counter = FlopCounterMode(model)
- with flop_counter:
- # detection models expect a list of 3d tensors as inputs
- if module_name == "detection":
- model(inp)
- else:
- model(*inp)
- flops = flop_counter.get_flops()
- return round(flops, 3)
- def get_file_size_mb(weight):
- weights_path = os.path.join(os.getenv("HOME"), ".cache/torch/hub/checkpoints", weight.url.split("/")[-1])
- weights_size_mb = os.path.getsize(weights_path) / 1024 / 1024
- return round(weights_size_mb, 3)
|