1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
|
- import copy
- import io
- from contextlib import redirect_stdout
- import numpy as np
- import pycocotools.mask as mask_util
- import torch
- import utils
- from pycocotools.coco import COCO
- from pycocotools.cocoeval import COCOeval
- class CocoEvaluator:
- def __init__(self, coco_gt, iou_types):
- if not isinstance(iou_types, (list, tuple)):
- raise TypeError(f"This constructor expects iou_types of type list or tuple, instead got {type(iou_types)}")
- coco_gt = copy.deepcopy(coco_gt)
- self.coco_gt = coco_gt
- self.iou_types = iou_types
- self.coco_eval = {}
- for iou_type in iou_types:
- self.coco_eval[iou_type] = COCOeval(coco_gt, iouType=iou_type)
- self.img_ids = []
- self.eval_imgs = {k: [] for k in iou_types}
- def update(self, predictions):
- img_ids = list(np.unique(list(predictions.keys())))
- self.img_ids.extend(img_ids)
- for iou_type in self.iou_types:
- results = self.prepare(predictions, iou_type)
- with redirect_stdout(io.StringIO()):
- coco_dt = COCO.loadRes(self.coco_gt, results) if results else COCO()
- coco_eval = self.coco_eval[iou_type]
- coco_eval.cocoDt = coco_dt
- coco_eval.params.imgIds = list(img_ids)
- img_ids, eval_imgs = evaluate(coco_eval)
- self.eval_imgs[iou_type].append(eval_imgs)
- def synchronize_between_processes(self):
- for iou_type in self.iou_types:
- self.eval_imgs[iou_type] = np.concatenate(self.eval_imgs[iou_type], 2)
- create_common_coco_eval(self.coco_eval[iou_type], self.img_ids, self.eval_imgs[iou_type])
- def accumulate(self):
- for coco_eval in self.coco_eval.values():
- coco_eval.accumulate()
- def summarize(self):
- for iou_type, coco_eval in self.coco_eval.items():
- print(f"IoU metric: {iou_type}")
- coco_eval.summarize()
- def prepare(self, predictions, iou_type):
- if iou_type == "bbox":
- return self.prepare_for_coco_detection(predictions)
- if iou_type == "segm":
- return self.prepare_for_coco_segmentation(predictions)
- if iou_type == "keypoints":
- return self.prepare_for_coco_keypoint(predictions)
- raise ValueError(f"Unknown iou type {iou_type}")
- def prepare_for_coco_detection(self, predictions):
- coco_results = []
- for original_id, prediction in predictions.items():
- if len(prediction) == 0:
- continue
- boxes = prediction["boxes"]
- boxes = convert_to_xywh(boxes).tolist()
- scores = prediction["scores"].tolist()
- labels = prediction["labels"].tolist()
- coco_results.extend(
- [
- {
- "image_id": original_id,
- "category_id": labels[k],
- "bbox": box,
- "score": scores[k],
- }
- for k, box in enumerate(boxes)
- ]
- )
- return coco_results
- def prepare_for_coco_segmentation(self, predictions):
- coco_results = []
- for original_id, prediction in predictions.items():
- if len(prediction) == 0:
- continue
- scores = prediction["scores"]
- labels = prediction["labels"]
- masks = prediction["masks"]
- masks = masks > 0.5
- scores = prediction["scores"].tolist()
- labels = prediction["labels"].tolist()
- rles = [
- mask_util.encode(np.array(mask[0, :, :, np.newaxis], dtype=np.uint8, order="F"))[0] for mask in masks
- ]
- for rle in rles:
- rle["counts"] = rle["counts"].decode("utf-8")
- coco_results.extend(
- [
- {
- "image_id": original_id,
- "category_id": labels[k],
- "segmentation": rle,
- "score": scores[k],
- }
- for k, rle in enumerate(rles)
- ]
- )
- return coco_results
- def prepare_for_coco_keypoint(self, predictions):
- coco_results = []
- for original_id, prediction in predictions.items():
- if len(prediction) == 0:
- continue
- boxes = prediction["boxes"]
- boxes = convert_to_xywh(boxes).tolist()
- scores = prediction["scores"].tolist()
- labels = prediction["labels"].tolist()
- keypoints = prediction["keypoints"]
- keypoints = keypoints.flatten(start_dim=1).tolist()
- coco_results.extend(
- [
- {
- "image_id": original_id,
- "category_id": labels[k],
- "keypoints": keypoint,
- "score": scores[k],
- }
- for k, keypoint in enumerate(keypoints)
- ]
- )
- return coco_results
- def convert_to_xywh(boxes):
- xmin, ymin, xmax, ymax = boxes.unbind(1)
- return torch.stack((xmin, ymin, xmax - xmin, ymax - ymin), dim=1)
- def merge(img_ids, eval_imgs):
- all_img_ids = utils.all_gather(img_ids)
- all_eval_imgs = utils.all_gather(eval_imgs)
- merged_img_ids = []
- for p in all_img_ids:
- merged_img_ids.extend(p)
- merged_eval_imgs = []
- for p in all_eval_imgs:
- merged_eval_imgs.append(p)
- merged_img_ids = np.array(merged_img_ids)
- merged_eval_imgs = np.concatenate(merged_eval_imgs, 2)
- # keep only unique (and in sorted order) images
- merged_img_ids, idx = np.unique(merged_img_ids, return_index=True)
- merged_eval_imgs = merged_eval_imgs[..., idx]
- return merged_img_ids, merged_eval_imgs
- def create_common_coco_eval(coco_eval, img_ids, eval_imgs):
- img_ids, eval_imgs = merge(img_ids, eval_imgs)
- img_ids = list(img_ids)
- eval_imgs = list(eval_imgs.flatten())
- coco_eval.evalImgs = eval_imgs
- coco_eval.params.imgIds = img_ids
- coco_eval._paramsEval = copy.deepcopy(coco_eval.params)
- def evaluate(imgs):
- with redirect_stdout(io.StringIO()):
- imgs.evaluate()
- return imgs.params.imgIds, np.asarray(imgs.evalImgs).reshape(-1, len(imgs.params.areaRng), len(imgs.params.imgIds))
|