1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
|
- """
- This training script can be run both on a single gpu in debug mode,
- and also in a larger training run with distributed data parallel (ddp).
- To run on a single GPU, example:
- $ python train.py --batch_size=32 --compile=False
- To run with DDP on 4 gpus on 1 node, example:
- $ torchrun --standalone --nproc_per_node=4 train.py
- To run with DDP on 4 gpus across 2 nodes, example:
- - Run on the first (master) node with example IP 123.456.123.456:
- $ torchrun --nproc_per_node=8 --nnodes=2 --node_rank=0 --master_addr=123.456.123.456 --master_port=1234 train.py
- - Run on the worker node:
- $ torchrun --nproc_per_node=8 --nnodes=2 --node_rank=1 --master_addr=123.456.123.456 --master_port=1234 train.py
- (If your cluster does not have Infiniband interconnect prepend NCCL_IB_DISABLE=1)
- """
- import os
- import time
- import math
- import pickle
- from contextlib import nullcontext
- import numpy as np
- import torch
- from torch.nn.parallel import DistributedDataParallel as DDP
- from torch.distributed import init_process_group, destroy_process_group
- from model import GPTConfig, GPT
- from mess3 import Mess3
- # -----------------------------------------------------------------------------
- # default config values designed to train a gpt2 (124M) on OpenWebText
- # I/O
- out_dir = 'out'
- eval_interval = 2000
- log_interval = 1
- eval_iters = 200
- eval_only = False # if True, script exits right after the first eval
- always_save_checkpoint = True # if True, always save a checkpoint after each eval
- init_from = 'scratch' # 'scratch' or 'resume' or 'gpt2*'
- # wandb logging
- wandb_log = False # disabled by default
- wandb_project = 'owt'
- wandb_run_name = 'gpt2' # 'run' + str(time.time())
- # data
- dataset = 'openwebtext'
- gradient_accumulation_steps = 5 * 8 # used to simulate larger batch sizes
- batch_size = 12 # if gradient_accumulation_steps > 1, this is the micro-batch size
- block_size = 1024
- # model
- n_layer = 12
- n_head = 12
- n_embd = 768
- dropout = 0.0 # for pretraining 0 is good, for finetuning try 0.1+
- bias = False # do we use bias inside LayerNorm and Linear layers?
- # adamw optimizer
- learning_rate = 6e-4 # max learning rate
- max_iters = 600000 # total number of training iterations
- weight_decay = 1e-1
- beta1 = 0.9
- beta2 = 0.95
- grad_clip = 1.0 # clip gradients at this value, or disable if == 0.0
- # learning rate decay settings
- decay_lr = True # whether to decay the learning rate
- warmup_iters = 2000 # how many steps to warm up for
- lr_decay_iters = 600000 # should be ~= max_iters per Chinchilla
- min_lr = 6e-5 # minimum learning rate, should be ~= learning_rate/10 per Chinchilla
- # DDP settings
- backend = 'nccl' # 'nccl', 'gloo', etc.
- # system
- device = 'cuda' # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1' etc., or try 'mps' on macbooks
- dtype = 'bfloat16' if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else 'float16' # 'float32', 'bfloat16', or 'float16', the latter will auto implement a GradScaler
- compile = True # use PyTorch 2.0 to compile the model to be faster
- # -----------------------------------------------------------------------------
- config_keys = [k for k,v in globals().items() if not k.startswith('_') and isinstance(v, (int, float, bool, str))]
- exec(open('configurator.py').read()) # overrides from command line or config file
- config = {k: globals()[k] for k in config_keys} # will be useful for logging
- # -----------------------------------------------------------------------------
- # various inits, derived attributes, I/O setup
- ddp = int(os.environ.get('RANK', -1)) != -1 # is this a ddp run?
- if ddp:
- init_process_group(backend=backend)
- ddp_rank = int(os.environ['RANK'])
- ddp_local_rank = int(os.environ['LOCAL_RANK'])
- ddp_world_size = int(os.environ['WORLD_SIZE'])
- device = f'cuda:{ddp_local_rank}'
- torch.cuda.set_device(device)
- master_process = ddp_rank == 0 # this process will do logging, checkpointing etc.
- seed_offset = ddp_rank # each process gets a different seed
- # world_size number of processes will be training simultaneously, so we can scale
- # down the desired gradient accumulation iterations per process proportionally
- assert gradient_accumulation_steps % ddp_world_size == 0
- gradient_accumulation_steps //= ddp_world_size
- else:
- # if not ddp, we are running on a single gpu, and one process
- master_process = True
- seed_offset = 0
- ddp_world_size = 1
- tokens_per_iter = gradient_accumulation_steps * ddp_world_size * batch_size * block_size
- print(f"tokens per iteration will be: {tokens_per_iter:,}")
- if master_process:
- os.makedirs(out_dir, exist_ok=True)
- torch.manual_seed(1337 + seed_offset)
- torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
- torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
- device_type = 'cuda' if 'cuda' in device else 'cpu' # for later use in torch.autocast
- # note: float16 data type will automatically use a GradScaler
- ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
- ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
- # poor man's data loader
- data_dir = os.path.join('data', dataset)
- # def get_batch(split):
- # # We recreate np.memmap every batch to avoid a memory leak, as per
- # # https://stackoverflow.com/questions/45132940/numpy-memmap-memory-usage-want-to-iterate-once/61472122#61472122
- # if split == 'train':
- # data = np.memmap(os.path.join(data_dir, 'train.bin'), dtype=np.uint16, mode='r')
- # else:
- # data = np.memmap(os.path.join(data_dir, 'val.bin'), dtype=np.uint16, mode='r')
- # ix = torch.randint(len(data) - block_size, (batch_size,))
- # x = torch.stack([torch.from_numpy((data[i:i+block_size]).astype(np.int64)) for i in ix])
- # y = torch.stack([torch.from_numpy((data[i+1:i+1+block_size]).astype(np.int64)) for i in ix])
- # if device_type == 'cuda':
- # # pin arrays x,y, which allows us to move them to GPU asynchronously (non_blocking=True)
- # x, y = x.pin_memory().to(device, non_blocking=True), y.pin_memory().to(device, non_blocking=True)
- # else:
- # x, y = x.to(device), y.to(device)
- # return x, y
- get_batch = Mess3(batch_size, block_size, device_type).get_batch
- # init these up here, can override if init_from='resume' (i.e. from a checkpoint)
- iter_num = 0
- best_val_loss = 1e9
- # attempt to derive vocab_size from the dataset
- meta_path = os.path.join(data_dir, 'meta.pkl')
- meta_vocab_size = None
- if os.path.exists(meta_path):
- with open(meta_path, 'rb') as f:
- meta = pickle.load(f)
- meta_vocab_size = meta['vocab_size']
- print(f"found vocab_size = {meta_vocab_size} (inside {meta_path})")
- # model init
- model_args = dict(n_layer=n_layer, n_head=n_head, n_embd=n_embd, block_size=block_size,
- bias=bias, vocab_size=None, dropout=dropout) # start with model_args from command line
- if init_from == 'scratch':
- # init a new model from scratch
- print("Initializing a new model from scratch")
- # determine the vocab size we'll use for from-scratch training
- if meta_vocab_size is None:
- print("defaulting to vocab_size of GPT-2 to 50304 (50257 rounded up for efficiency)")
- model_args['vocab_size'] = meta_vocab_size if meta_vocab_size is not None else 50304
- gptconf = GPTConfig(block_size=block_size,
- vocab_size=3,
- n_layer=n_layer,
- n_head=n_head,
- n_embd=n_embd,
- dropout=dropout,
- bias=bias)
- #gptconf = GPTConfig(**model_args)
- model = GPT(gptconf)
- elif init_from == 'resume':
- print(f"Resuming training from {out_dir}")
- # resume training from a checkpoint.
- ckpt_path = os.path.join(out_dir, 'ckpt.pt')
- checkpoint = torch.load(ckpt_path, map_location=device)
- checkpoint_model_args = checkpoint['model_args']
- # force these config attributes to be equal otherwise we can't even resume training
- # the rest of the attributes (e.g. dropout) can stay as desired from command line
- for k in ['n_layer', 'n_head', 'n_embd', 'block_size', 'bias', 'vocab_size']:
- model_args[k] = checkpoint_model_args[k]
- # create the model
- gptconf = GPTConfig(**model_args)
- model = GPT(gptconf)
- state_dict = checkpoint['model']
- # fix the keys of the state dictionary :(
- # honestly no idea how checkpoints sometimes get this prefix, have to debug more
- unwanted_prefix = '_orig_mod.'
- for k,v in list(state_dict.items()):
- if k.startswith(unwanted_prefix):
- state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
- model.load_state_dict(state_dict)
- iter_num = checkpoint['iter_num']
- best_val_loss = checkpoint['best_val_loss']
- elif init_from.startswith('gpt2'):
- print(f"Initializing from OpenAI GPT-2 weights: {init_from}")
- # initialize from OpenAI GPT-2 weights
- override_args = dict(dropout=dropout)
- model = GPT.from_pretrained(init_from, override_args)
- # read off the created config params, so we can store them into checkpoint correctly
- for k in ['n_layer', 'n_head', 'n_embd', 'block_size', 'bias', 'vocab_size']:
- model_args[k] = getattr(model.config, k)
- # crop down the model block size if desired, using model surgery
- if block_size < model.config.block_size:
- model.crop_block_size(block_size)
- model_args['block_size'] = block_size # so that the checkpoint will have the right value
- model.to(device)
- # initialize a GradScaler. If enabled=False scaler is a no-op
- scaler = torch.cuda.amp.GradScaler(enabled=(dtype == 'float16'))
- # optimizer
- optimizer = model.configure_optimizers(weight_decay, learning_rate, (beta1, beta2), device_type)
- if init_from == 'resume':
- optimizer.load_state_dict(checkpoint['optimizer'])
- checkpoint = None # free up memory
- # compile the model
- if compile:
- print("compiling the model... (takes a ~minute)")
- unoptimized_model = model
- model = torch.compile(model) # requires PyTorch 2.0
- # wrap model into DDP container
- if ddp:
- model = DDP(model, device_ids=[ddp_local_rank])
- # helps estimate an arbitrarily accurate loss over either split using many batches
- @torch.no_grad()
- def estimate_loss():
- out = {}
- model.eval()
- for split in ['train', 'val']:
- losses = torch.zeros(eval_iters)
- for k in range(eval_iters):
- X, Y = get_batch(split)
- with ctx:
- logits, loss = model(X, Y)
- losses[k] = loss.item()
- out[split] = losses.mean()
- model.train()
- return out
- # learning rate decay scheduler (cosine with warmup)
- def get_lr(it):
- # 1) linear warmup for warmup_iters steps
- if it < warmup_iters:
- return learning_rate * (it + 1) / (warmup_iters + 1)
- # 2) if it > lr_decay_iters, return min learning rate
- if it > lr_decay_iters:
- return min_lr
- # 3) in between, use cosine decay down to min learning rate
- decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
- assert 0 <= decay_ratio <= 1
- coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) # coeff ranges 0..1
- return min_lr + coeff * (learning_rate - min_lr)
- # logging
- if wandb_log and master_process:
- import wandb
- wandb.init(project=wandb_project, name=wandb_run_name, config=config)
- # training loop
- X, Y = get_batch('train') # fetch the very first batch
- t0 = time.time()
- local_iter_num = 0 # number of iterations in the lifetime of this process
- raw_model = model.module if ddp else model # unwrap DDP container if needed
- running_mfu = -1.0
- while True:
- # determine and set the learning rate for this iteration
- lr = get_lr(iter_num) if decay_lr else learning_rate
- for param_group in optimizer.param_groups:
- param_group['lr'] = lr
- # evaluate the loss on train/val sets and write checkpoints
- if iter_num % eval_interval == 0 and master_process:
- losses = estimate_loss()
- print(f"step {iter_num}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}")
- if wandb_log:
- wandb.log({
- "iter": iter_num,
- "train/loss": losses['train'],
- "val/loss": losses['val'],
- "lr": lr,
- "mfu": running_mfu*100, # convert to percentage
- })
- if losses['val'] < best_val_loss or always_save_checkpoint:
- best_val_loss = losses['val']
- if iter_num > 0:
- checkpoint = {
- 'model': raw_model.state_dict(),
- 'optimizer': optimizer.state_dict(),
- 'model_args': model_args,
- 'iter_num': iter_num,
- 'best_val_loss': best_val_loss,
- 'config': config,
- }
- print(f"saving checkpoint to {out_dir}")
- torch.save(checkpoint, os.path.join(out_dir, 'ckpt.pt'))
- if iter_num == 0 and eval_only:
- break
- # forward backward update, with optional gradient accumulation to simulate larger batch size
- # and using the GradScaler if data type is float16
- for micro_step in range(gradient_accumulation_steps):
- if ddp:
- # in DDP training we only need to sync gradients at the last micro step.
- # the official way to do this is with model.no_sync() context manager, but
- # I really dislike that this bloats the code and forces us to repeat code
- # looking at the source of that context manager, it just toggles this variable
- model.require_backward_grad_sync = (micro_step == gradient_accumulation_steps - 1)
- with ctx:
- logits, loss = model(X, Y)
- loss = loss / gradient_accumulation_steps # scale the loss to account for gradient accumulation
- # immediately async prefetch next batch while model is doing the forward pass on the GPU
- X, Y = get_batch('train')
- # backward pass, with gradient scaling if training in fp16
- scaler.scale(loss).backward()
- # clip the gradient
- if grad_clip != 0.0:
- scaler.unscale_(optimizer)
- torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip)
- # step the optimizer and scaler if training in fp16
- scaler.step(optimizer)
- scaler.update()
- # flush the gradients as soon as we can, no need for this memory anymore
- optimizer.zero_grad(set_to_none=True)
- # timing and logging
- t1 = time.time()
- dt = t1 - t0
- t0 = t1
- if iter_num % log_interval == 0 and master_process:
- # get loss as float. note: this is a CPU-GPU sync point
- # scale up to undo the division above, approximating the true total loss (exact would have been a sum)
- lossf = loss.item() * gradient_accumulation_steps
- if local_iter_num >= 5: # let the training loop settle a bit
- mfu = raw_model.estimate_mfu(batch_size * gradient_accumulation_steps, dt)
- running_mfu = mfu if running_mfu == -1.0 else 0.9*running_mfu + 0.1*mfu
- print(f"iter {iter_num}: loss {lossf:.4f}, time {dt*1000:.2f}ms, mfu {running_mfu*100:.2f}%")
- iter_num += 1
- local_iter_num += 1
- # termination conditions
- if iter_num > max_iters:
- break
- if ddp:
- destroy_process_group()
|