1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
|
- import copy
- import multiprocessing
- import traceback
- import cv2
- import numpy as np
- from core import mplib
- from core.joblib import SubprocessGenerator, ThisThreadGenerator
- from facelib import LandmarksProcessor
- from samplelib import (SampleGeneratorBase, SampleLoader, SampleProcessor,
- SampleType)
- class Index2DHost():
- """
- Provides random shuffled 2D indexes for multiprocesses
- """
- def __init__(self, indexes2D):
- self.sq = multiprocessing.Queue()
- self.cqs = []
- self.clis = []
- self.thread = threading.Thread(target=self.host_thread, args=(indexes2D,) )
- self.thread.daemon = True
- self.thread.start()
- def host_thread(self, indexes2D):
- indexes_counts_len = len(indexes2D)
- idxs = [*range(indexes_counts_len)]
- idxs_2D = [None]*indexes_counts_len
- shuffle_idxs = []
- shuffle_idxs_2D = [None]*indexes_counts_len
- for i in range(indexes_counts_len):
- idxs_2D[i] = indexes2D[i]
- shuffle_idxs_2D[i] = []
- sq = self.sq
- while True:
- while not sq.empty():
- obj = sq.get()
- cq_id, cmd = obj[0], obj[1]
- if cmd == 0: #get_1D
- count = obj[2]
- result = []
- for i in range(count):
- if len(shuffle_idxs) == 0:
- shuffle_idxs = idxs.copy()
- np.random.shuffle(shuffle_idxs)
- result.append(shuffle_idxs.pop())
- self.cqs[cq_id].put (result)
- elif cmd == 1: #get_2D
- targ_idxs,count = obj[2], obj[3]
- result = []
- for targ_idx in targ_idxs:
- sub_idxs = []
- for i in range(count):
- ar = shuffle_idxs_2D[targ_idx]
- if len(ar) == 0:
- ar = shuffle_idxs_2D[targ_idx] = idxs_2D[targ_idx].copy()
- np.random.shuffle(ar)
- sub_idxs.append(ar.pop())
- result.append (sub_idxs)
- self.cqs[cq_id].put (result)
- time.sleep(0.001)
- def create_cli(self):
- cq = multiprocessing.Queue()
- self.cqs.append ( cq )
- cq_id = len(self.cqs)-1
- return Index2DHost.Cli(self.sq, cq, cq_id)
- # disable pickling
- def __getstate__(self):
- return dict()
- def __setstate__(self, d):
- self.__dict__.update(d)
- class Cli():
- def __init__(self, sq, cq, cq_id):
- self.sq = sq
- self.cq = cq
- self.cq_id = cq_id
- def get_1D(self, count):
- self.sq.put ( (self.cq_id,0, count) )
- while True:
- if not self.cq.empty():
- return self.cq.get()
- time.sleep(0.001)
- def get_2D(self, idxs, count):
- self.sq.put ( (self.cq_id,1,idxs,count) )
- while True:
- if not self.cq.empty():
- return self.cq.get()
- time.sleep(0.001)
-
- '''
- arg
- output_sample_types = [
- [SampleProcessor.TypeFlags, size, (optional) {} opts ] ,
- ...
- ]
- '''
- class SampleGeneratorFacePerson(SampleGeneratorBase):
- def __init__ (self, samples_path, debug=False, batch_size=1,
- sample_process_options=SampleProcessor.Options(),
- output_sample_types=[],
- person_id_mode=1,
- **kwargs):
- super().__init__(debug, batch_size)
- self.sample_process_options = sample_process_options
- self.output_sample_types = output_sample_types
- self.person_id_mode = person_id_mode
- raise NotImplementedError("Currently SampleGeneratorFacePerson is not implemented.")
- samples_host = SampleLoader.mp_host (SampleType.FACE, samples_path)
- samples = samples_host.get_list()
- self.samples_len = len(samples)
- if self.samples_len == 0:
- raise ValueError('No training data provided.')
- unique_person_names = { sample.person_name for sample in samples }
- persons_name_idxs = { person_name : [] for person_name in unique_person_names }
- for i,sample in enumerate(samples):
- persons_name_idxs[sample.person_name].append (i)
- indexes2D = [ persons_name_idxs[person_name] for person_name in unique_person_names ]
- index2d_host = Index2DHost(indexes2D)
- if self.debug:
- self.generators_count = 1
- self.generators = [iter_utils.ThisThreadGenerator ( self.batch_func, (samples_host.create_cli(), index2d_host.create_cli(),) )]
- else:
- self.generators_count = np.clip(multiprocessing.cpu_count(), 2, 4)
- self.generators = [iter_utils.SubprocessGenerator ( self.batch_func, (samples_host.create_cli(), index2d_host.create_cli(),) ) for i in range(self.generators_count) ]
- self.generator_counter = -1
- def __iter__(self):
- return self
- def __next__(self):
- self.generator_counter += 1
- generator = self.generators[self.generator_counter % len(self.generators) ]
- return next(generator)
- def batch_func(self, param ):
- samples, index2d_host, = param
- bs = self.batch_size
- while True:
- person_idxs = index2d_host.get_1D(bs)
- samples_idxs = index2d_host.get_2D(person_idxs, 1)
- batches = None
- for n_batch in range(bs):
- person_id = person_idxs[n_batch]
- sample_idx = samples_idxs[n_batch][0]
- sample = samples[ sample_idx ]
- try:
- x, = SampleProcessor.process ([sample], self.sample_process_options, self.output_sample_types, self.debug)
- except:
- raise Exception ("Exception occured in sample %s. Error: %s" % (sample.filename, traceback.format_exc() ) )
- if batches is None:
- batches = [ [] for _ in range(len(x)) ]
- batches += [ [] ]
- i_person_id = len(batches)-1
- for i in range(len(x)):
- batches[i].append ( x[i] )
- batches[i_person_id].append ( np.array([person_id]) )
- yield [ np.array(batch) for batch in batches]
- @staticmethod
- def get_person_id_max_count(samples_path):
- return SampleLoader.get_person_id_max_count(samples_path)
- """
- if self.person_id_mode==1:
- samples_len = len(samples)
- samples_idxs = [*range(samples_len)]
- shuffle_idxs = []
- elif self.person_id_mode==2:
- persons_count = len(samples)
- person_idxs = []
- for j in range(persons_count):
- for i in range(j+1,persons_count):
- person_idxs += [ [i,j] ]
- shuffle_person_idxs = []
- samples_idxs = [None]*persons_count
- shuffle_idxs = [None]*persons_count
- for i in range(persons_count):
- samples_idxs[i] = [*range(len(samples[i]))]
- shuffle_idxs[i] = []
- elif self.person_id_mode==3:
- persons_count = len(samples)
- person_idxs = [ *range(persons_count) ]
- shuffle_person_idxs = []
- samples_idxs = [None]*persons_count
- shuffle_idxs = [None]*persons_count
- for i in range(persons_count):
- samples_idxs[i] = [*range(len(samples[i]))]
- shuffle_idxs[i] = []
- if self.person_id_mode==2:
- if len(shuffle_person_idxs) == 0:
- shuffle_person_idxs = person_idxs.copy()
- np.random.shuffle(shuffle_person_idxs)
- person_ids = shuffle_person_idxs.pop()
- batches = None
- for n_batch in range(self.batch_size):
- if self.person_id_mode==1:
- if len(shuffle_idxs) == 0:
- shuffle_idxs = samples_idxs.copy()
- np.random.shuffle(shuffle_idxs) ###
- idx = shuffle_idxs.pop()
- sample = samples[ idx ]
- try:
- x, = SampleProcessor.process ([sample], self.sample_process_options, self.output_sample_types, self.debug)
- except:
- raise Exception ("Exception occured in sample %s. Error: %s" % (sample.filename, traceback.format_exc() ) )
- if type(x) != tuple and type(x) != list:
- raise Exception('SampleProcessor.process returns NOT tuple/list')
- if batches is None:
- batches = [ [] for _ in range(len(x)) ]
- batches += [ [] ]
- i_person_id = len(batches)-1
- for i in range(len(x)):
- batches[i].append ( x[i] )
- batches[i_person_id].append ( np.array([sample.person_id]) )
- elif self.person_id_mode==2:
- person_id1, person_id2 = person_ids
- if len(shuffle_idxs[person_id1]) == 0:
- shuffle_idxs[person_id1] = samples_idxs[person_id1].copy()
- np.random.shuffle(shuffle_idxs[person_id1])
- idx = shuffle_idxs[person_id1].pop()
- sample1 = samples[person_id1][idx]
- if len(shuffle_idxs[person_id2]) == 0:
- shuffle_idxs[person_id2] = samples_idxs[person_id2].copy()
- np.random.shuffle(shuffle_idxs[person_id2])
- idx = shuffle_idxs[person_id2].pop()
- sample2 = samples[person_id2][idx]
- if sample1 is not None and sample2 is not None:
- try:
- x1, = SampleProcessor.process ([sample1], self.sample_process_options, self.output_sample_types, self.debug)
- except:
- raise Exception ("Exception occured in sample %s. Error: %s" % (sample1.filename, traceback.format_exc() ) )
- try:
- x2, = SampleProcessor.process ([sample2], self.sample_process_options, self.output_sample_types, self.debug)
- except:
- raise Exception ("Exception occured in sample %s. Error: %s" % (sample2.filename, traceback.format_exc() ) )
- x1_len = len(x1)
- if batches is None:
- batches = [ [] for _ in range(x1_len) ]
- batches += [ [] ]
- i_person_id1 = len(batches)-1
- batches += [ [] for _ in range(len(x2)) ]
- batches += [ [] ]
- i_person_id2 = len(batches)-1
- for i in range(x1_len):
- batches[i].append ( x1[i] )
- for i in range(len(x2)):
- batches[x1_len+1+i].append ( x2[i] )
- batches[i_person_id1].append ( np.array([sample1.person_id]) )
- batches[i_person_id2].append ( np.array([sample2.person_id]) )
- elif self.person_id_mode==3:
- if len(shuffle_person_idxs) == 0:
- shuffle_person_idxs = person_idxs.copy()
- np.random.shuffle(shuffle_person_idxs)
- person_id = shuffle_person_idxs.pop()
- if len(shuffle_idxs[person_id]) == 0:
- shuffle_idxs[person_id] = samples_idxs[person_id].copy()
- np.random.shuffle(shuffle_idxs[person_id])
- idx = shuffle_idxs[person_id].pop()
- sample1 = samples[person_id][idx]
- if len(shuffle_idxs[person_id]) == 0:
- shuffle_idxs[person_id] = samples_idxs[person_id].copy()
- np.random.shuffle(shuffle_idxs[person_id])
- idx = shuffle_idxs[person_id].pop()
- sample2 = samples[person_id][idx]
- if sample1 is not None and sample2 is not None:
- try:
- x1, = SampleProcessor.process ([sample1], self.sample_process_options, self.output_sample_types, self.debug)
- except:
- raise Exception ("Exception occured in sample %s. Error: %s" % (sample1.filename, traceback.format_exc() ) )
- try:
- x2, = SampleProcessor.process ([sample2], self.sample_process_options, self.output_sample_types, self.debug)
- except:
- raise Exception ("Exception occured in sample %s. Error: %s" % (sample2.filename, traceback.format_exc() ) )
- x1_len = len(x1)
- if batches is None:
- batches = [ [] for _ in range(x1_len) ]
- batches += [ [] ]
- i_person_id1 = len(batches)-1
- batches += [ [] for _ in range(len(x2)) ]
- batches += [ [] ]
- i_person_id2 = len(batches)-1
- for i in range(x1_len):
- batches[i].append ( x1[i] )
- for i in range(len(x2)):
- batches[x1_len+1+i].append ( x2[i] )
- batches[i_person_id1].append ( np.array([sample1.person_id]) )
- batches[i_person_id2].append ( np.array([sample2.person_id]) )
- """
|