1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
|
- import multiprocessing
- import shutil
- from DFLIMG import *
- from core.interact import interact as io
- from core.joblib import Subprocessor
- from core.leras import nn
- from core import pathex
- from core.cv2ex import *
- class FacesetEnhancerSubprocessor(Subprocessor):
- #override
- def __init__(self, image_paths, output_dirpath, device_config):
- self.image_paths = image_paths
- self.output_dirpath = output_dirpath
- self.result = []
- self.nn_initialize_mp_lock = multiprocessing.Lock()
- self.devices = FacesetEnhancerSubprocessor.get_devices_for_config(device_config)
- super().__init__('FacesetEnhancer', FacesetEnhancerSubprocessor.Cli, 600)
- #override
- def on_clients_initialized(self):
- io.progress_bar (None, len (self.image_paths))
- #override
- def on_clients_finalized(self):
- io.progress_bar_close()
- #override
- def process_info_generator(self):
- base_dict = {'output_dirpath':self.output_dirpath,
- 'nn_initialize_mp_lock': self.nn_initialize_mp_lock,}
- for (device_idx, device_type, device_name, device_total_vram_gb) in self.devices:
- client_dict = base_dict.copy()
- client_dict['device_idx'] = device_idx
- client_dict['device_name'] = device_name
- client_dict['device_type'] = device_type
- yield client_dict['device_name'], {}, client_dict
- #override
- def get_data(self, host_dict):
- if len (self.image_paths) > 0:
- return self.image_paths.pop(0)
- #override
- def on_data_return (self, host_dict, data):
- self.image_paths.insert(0, data)
- #override
- def on_result (self, host_dict, data, result):
- io.progress_bar_inc(1)
- if result[0] == 1:
- self.result +=[ (result[1], result[2]) ]
- #override
- def get_result(self):
- return self.result
- @staticmethod
- def get_devices_for_config (device_config):
- devices = device_config.devices
- cpu_only = len(devices) == 0
- if not cpu_only:
- return [ (device.index, 'GPU', device.name, device.total_mem_gb) for device in devices ]
- else:
- return [ (i, 'CPU', 'CPU%d' % (i), 0 ) for i in range( min(8, multiprocessing.cpu_count() // 2) ) ]
- class Cli(Subprocessor.Cli):
- #override
- def on_initialize(self, client_dict):
- device_idx = client_dict['device_idx']
- cpu_only = client_dict['device_type'] == 'CPU'
- self.output_dirpath = client_dict['output_dirpath']
- nn_initialize_mp_lock = client_dict['nn_initialize_mp_lock']
- if cpu_only:
- device_config = nn.DeviceConfig.CPU()
- device_vram = 99
- else:
- device_config = nn.DeviceConfig.GPUIndexes ([device_idx])
- device_vram = device_config.devices[0].total_mem_gb
- nn.initialize (device_config)
- intro_str = 'Running on %s.' % (client_dict['device_name'])
- self.log_info (intro_str)
- from facelib import FaceEnhancer
- self.fe = FaceEnhancer( place_model_on_cpu=(device_vram<=2 or cpu_only), run_on_cpu=cpu_only )
- #override
- def process_data(self, filepath):
- try:
- dflimg = DFLIMG.load (filepath)
- if dflimg is None or not dflimg.has_data():
- self.log_err (f"{filepath.name} is not a dfl image file")
- else:
- dfl_dict = dflimg.get_dict()
- img = cv2_imread(filepath).astype(np.float32) / 255.0
- img = self.fe.enhance(img)
- img = np.clip (img*255, 0, 255).astype(np.uint8)
- output_filepath = self.output_dirpath / filepath.name
- cv2_imwrite ( str(output_filepath), img, [int(cv2.IMWRITE_JPEG_QUALITY), 100] )
- dflimg = DFLIMG.load (output_filepath)
- dflimg.set_dict(dfl_dict)
- dflimg.save()
- return (1, filepath, output_filepath)
- except:
- self.log_err (f"Exception occured while processing file {filepath}. Error: {traceback.format_exc()}")
- return (0, filepath, None)
- def process_folder ( dirpath, cpu_only=False, force_gpu_idxs=None ):
- device_config = nn.DeviceConfig.GPUIndexes( force_gpu_idxs or nn.ask_choose_device_idxs(suggest_all_gpu=True) ) \
- if not cpu_only else nn.DeviceConfig.CPU()
- output_dirpath = dirpath.parent / (dirpath.name + '_enhanced')
- output_dirpath.mkdir (exist_ok=True, parents=True)
- dirpath_parts = '/'.join( dirpath.parts[-2:])
- output_dirpath_parts = '/'.join( output_dirpath.parts[-2:] )
- io.log_info (f"Enhancing faceset in {dirpath_parts}")
- io.log_info ( f"Processing to {output_dirpath_parts}")
- output_images_paths = pathex.get_image_paths(output_dirpath)
- if len(output_images_paths) > 0:
- for filename in output_images_paths:
- Path(filename).unlink()
- image_paths = [Path(x) for x in pathex.get_image_paths( dirpath )]
- result = FacesetEnhancerSubprocessor ( image_paths, output_dirpath, device_config=device_config).run()
- is_merge = io.input_bool (f"\r\nMerge {output_dirpath_parts} to {dirpath_parts} ?", True)
- if is_merge:
- io.log_info (f"Copying processed files to {dirpath_parts}")
- for (filepath, output_filepath) in result:
- try:
- shutil.copy (output_filepath, filepath)
- except:
- pass
- io.log_info (f"Removing {output_dirpath_parts}")
- shutil.rmtree(output_dirpath)
|