1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
|
- import warnings
- warnings.filterwarnings("ignore")
- import numpy as np
- import time
- import os
- import glob
- import random
- from utils.io_utils import set_seed, parse_args
- params = parse_args('train')
- os.environ["CUDA_VISIBLE_DEVICES"] = params.device
- import torch
- import torch.nn as nn
- from torch.autograd import Variable
- import torch.optim
- import torch.optim.lr_scheduler as lr_scheduler
- set_seed(params.seed)
- import config.configs as configs
- import models.backbone as backbone
- from data.datamgr_2loss import SimpleDataManager, SetDataManager
- from methods.protonet_2loss import ProtoNet
-
- from utils.io_utils import model_dict, get_resume_file, get_best_file, get_assigned_file
- import json
- from models.model_resnet import *
- from utils.utils import RunningAverage
- from tqdm import tqdm
- import wandb
- from dagshub import DAGsHubLogger
- try:
- from apex.parallel import DistributedDataParallel as DDP
- from apex.fp16_utils import *
- from apex import amp, optimizers
- from apex.multi_tensor_apply import multi_tensor_applier
- except ImportError:
- print("AMP is not installed. If --amp is True, code will fail.")
- def train(base_loader, val_loader, model, optimizer, start_epoch, stop_epoch, params, base_loader_u, val_loader_u, semi_sup):
-
- if params.amp:
- print("-----------Using mixed precision-----------")
- model, optimizer = amp.initialize(model, optimizer)
- eval_interval = params.eval_interval
- max_acc = 0
-
- pbar = tqdm(range(0, stop_epoch*len(base_loader)), total = stop_epoch*len(base_loader))
-
- pbar.update(start_epoch*len(base_loader))
- pbar.refresh()
-
- model.global_count = start_epoch*len(base_loader)
-
- for epoch in range(start_epoch,stop_epoch):
- start_time = time.time()
-
- model.train()
- avg_loss = model.train_loop(epoch, base_loader, optimizer, pbar=pbar, enable_amp=params.amp, base_loader_u=base_loader_u, semi_sup=semi_sup)
-
- end_time = time.time()
-
- wandb.log({"Epoch": epoch}, step=model.global_count)
- wandb.log({"Epoch Time": end_time-start_time}, step=model.global_count)
-
- logger.log_metrics({"Epoch": epoch}, step=model.global_count)
- logger.log_metrics({"Epoch Time": end_time-start_time}, step=model.global_count)
-
- pbar.write(u'\u2713' + ' Epoch: %d; Time taken: %d sec.' % (epoch, end_time-start_time))
- if(avg_loss == float('inf') or avg_loss == 0):
- raise Exception("avg_loss is: ", avg_loss)
- if epoch % eval_interval == 0 or epoch == stop_epoch - 1:
- pbar.write("Validating...")
- model.eval()
- if not os.path.isdir(params.checkpoint_dir):
- os.makedirs(params.checkpoint_dir)
- if params.jigsaw and params.rotation:
- acc, acc_jigsaw, acc_rotation = model.test_loop( val_loader, base_loader_u=val_loader_u, semi_sup=semi_sup)
- wandb.log({'val/acc': acc}, step=model.global_count)
- wandb.log({'val/acc_jigsaw': acc_jigsaw}, step=model.global_count)
- wandb.log({'val/acc_rotation': acc_rotation}, step=model.global_count)
-
- logger.log_metrics({'val/acc': acc}, step=model.global_count)
- logger.log_metrics({'val/acc_jigsaw': acc_jigsaw}, step=model.global_count)
- logger.log_metrics({'val/acc_rotation': acc_rotation}, step=model.global_count)
- elif params.jigsaw:
- acc, acc_jigsaw = model.test_loop( val_loader, base_loader_u=val_loader_u, semi_sup=semi_sup)
- wandb.log({'val/acc': acc}, step=model.global_count)
- wandb.log({'val/acc_jigsaw': acc_jigsaw}, step=model.global_count)
-
- logger.log_metrics({'val/acc': acc}, step=model.global_count)
- logger.log_metrics({'val/acc_jigsaw': acc_jigsaw}, step=model.global_count)
- elif params.rotation:
- acc, acc_rotation = model.test_loop( val_loader, base_loader_u=val_loader_u, semi_sup=semi_sup)
- wandb.log({'val/acc': acc}, step=model.global_count)
- wandb.log({'val/acc_rotation': acc_rotation}, step=model.global_count)
-
- logger.log_metrics({'val/acc': acc}, step=model.global_count)
- logger.log_metrics({'val/acc_rotation': acc_rotation}, step=model.global_count)
- else:
- acc = model.test_loop( val_loader, base_loader_u=val_loader_u, semi_sup=semi_sup)
- wandb.log({'val/acc': acc}, step=model.global_count)
-
- logger.log_metrics({'val/acc': acc}, step=model.global_count)
- if acc > max_acc :
- max_acc = acc
- outfile = os.path.join(params.checkpoint_dir, 'best_model.tar')
- torch.save({'epoch':epoch, 'state':model.state_dict(), 'optimizer': optimizer.state_dict()}, outfile)
- wandb.save(outfile)
- if ((epoch) % params.save_freq==0) or (epoch==stop_epoch-1):
- outfile = os.path.join(params.checkpoint_dir, 'last_model.tar')
- torch.save({'epoch':epoch, 'state':model.state_dict(), 'optimizer': optimizer.state_dict()}, outfile)
- wandb.save(outfile)
- pbar.close()
-
- if __name__=='__main__':
- torch.cuda.set_device(int(params.device[0]))
-
- logger = DAGsHubLogger(metrics_path="dagshub_logs/metrics.csv", hparams_path="dagshub_logs/params.yml")
- isAircraft = (params.dataset == 'aircrafts')
- if params.bn_type == 1:
- params.no_bn = False
- params.tracking = True
- elif params.bn_type == 2:
- params.no_bn = False
- params.tracking = False
- elif params.bn_type == 3:
- params.no_bn = True
- params.tracking = False
- else:
- raise Exception("Unrecognized BN Type: ", print(params.bn_type), " of type ", type(params.bn_type))
- base_file = configs.data_dir[params.dataset] + 'base.json'
- val_file = configs.data_dir[params.dataset] + 'val.json'
- test_file = configs.data_dir[params.dataset] + 'novel.json'
- train_iter_num = 100 # NOTE: should be `100`
- val_iter_num = 600 # NOTE: should be `100`
- test_iter_num = 600 # NOTE: should be `600`
- if 'Conv' in params.model:
- if params.dataset in ['omniglot', 'cross_char']:
- image_size = 28
- else:
- image_size = 84
- # image_size = 255
- else:
- # image_size = 224 #original setting
- # image_size = 256 #my setting
- image_size = params.image_size
- if params.dataset in ['omniglot', 'cross_char']:
- assert params.model == 'Conv4' and not params.train_aug ,'omniglot only support Conv4 without augmentation'
- params.model = 'Conv4S'
- if params.method in ['protonet','matchingnet','relationnet', 'relationnet_softmax', 'maml', 'maml_approx']:
- n_query = max(1, int(params.n_query * params.test_n_way/params.train_n_way)) #if test_n_way is smaller than train_n_way, reduce n_query to keep batch size small
- print('n_query:',n_query)
- print("semi-sup is: ", params.semi_sup)
- base_datamgr_u = SimpleDataManager(image_size, batch_size = params.train_n_way * (params.n_shot + n_query), jigsaw=params.jigsaw, rotation=params.rotation, isAircraft=isAircraft, grey=params.grey, shuffle=True)
- val_datamgr_u = SimpleDataManager(image_size, batch_size = params.test_n_way * (params.n_shot + n_query), jigsaw=params.jigsaw, rotation=params.rotation, isAircraft=isAircraft, grey=params.grey, shuffle=True)
- if params.dataset_unlabel is not None and (params.jigsaw or params.rotation):
- if "," in params.dataset_unlabel:
- params.dataset_unlabel = params.dataset_unlabel.split(",")
- if type(params.dataset_unlabel) is list:
- # a list of datasets will be there, and we need to fuse them inside get_data_loader
- print('datasets for self-supervision are: ', params.dataset_unlabel)
- base_file_u = [os.path.join('filelists', x, 'base.json') for x in params.dataset_unlabel]
- print("base files for self-supervision is:", base_file_u)
- val_file_u = [os.path.join('filelists', x, 'val.json') for x in params.dataset_unlabel]
- print("val files for self-supervision is:", val_file_u)
- else:
- print('dataset for self-supervision is: ', params.dataset_unlabel)
- base_file_u = os.path.join('filelists', params.dataset_unlabel, 'base.json')
- print("base file for self-supervision is:", base_file_u)
- val_file_u = os.path.join('filelists', params.dataset_unlabel, 'val.json')
- print("val file for self-supervision is:", val_file_u)
- base_loader_u = base_datamgr_u.get_data_loader( base_file_u , aug = params.train_aug )
- val_loader_u = val_datamgr_u.get_data_loader( val_file_u , aug = False )
- else:
- base_loader_u = None
- val_loader_u = None
-
- # train_few_shot_params = dict(n_way = params.train_n_way, n_support = params.n_shot)
- train_few_shot_params = dict(n_way = params.train_n_way, n_support = params.n_shot, \
- jigsaw=params.jigsaw, lbda=params.lbda, rotation=params.rotation, lbda_jigsaw=params.lbda_jigsaw, lbda_rotation=params.lbda_rotation)
- base_datamgr = SetDataManager(image_size, n_query = n_query, n_eposide = train_iter_num, **train_few_shot_params, isAircraft=isAircraft, grey=params.grey, low_res=params.low_res, sup_ratio=params.sup_ratio, semi_sup=params.semi_sup)
- base_loader = base_datamgr.get_data_loader( base_file , aug = params.train_aug )
-
- val_few_shot_params = dict(n_way = params.test_n_way, n_support = params.n_shot, \
- jigsaw=params.jigsaw, lbda=params.lbda, rotation=params.rotation, lbda_jigsaw=params.lbda_jigsaw, lbda_rotation=params.lbda_rotation)
- val_datamgr = SetDataManager(image_size, n_query = n_query, n_eposide = val_iter_num, **val_few_shot_params, isAircraft=isAircraft, grey=params.grey, low_res=params.low_res, semi_sup=params.semi_sup)
- val_loader = val_datamgr.get_data_loader( val_file, aug = False)
- #a batch for SetDataManager: a [n_way, n_support + n_query, dim, w, h] tensor
- test_few_shot_params = dict(n_way = params.test_n_way, n_support = params.n_shot, \
- jigsaw=params.jigsaw, lbda=params.lbda, rotation=params.rotation, lbda_jigsaw=params.lbda_jigsaw, lbda_rotation=params.lbda_rotation)
- test_datamgr = SetDataManager(image_size, n_query = n_query, n_eposide = test_iter_num, **test_few_shot_params, isAircraft=isAircraft, grey=params.grey, low_res=params.low_res, semi_sup=params.semi_sup)
- test_loader = test_datamgr.get_data_loader( test_file, aug = False)
- if params.method == 'protonet':
- model = ProtoNet( model_dict[params.model], **train_few_shot_params , use_bn=(not params.no_bn), pretrain=params.pretrain, tracking=params.tracking, model=params.model)
- elif params.method in ['maml' , 'maml_approx']:
- backbone.ConvBlock.maml = True
- backbone.SimpleBlock.maml = True
- backbone.BottleneckBlock.maml = True
- backbone.ResNet.maml = True
- BasicBlock.maml = True
- Bottleneck.maml = True
- ResNet.maml = True
- model = MAML( model_dict[params.model], approx = (params.method == 'maml_approx') , tracking=params.tracking, **train_few_shot_params )
- if params.dataset in ['omniglot', 'cross_char']: #maml use different parameter in omniglot
- model.n_task = 32
- model.task_update_num = 1
- model.train_lr = 0.1
- else:
- raise ValueError('Unknown method')
- # import ipdb; ipdb.set_trace()
- model = model.cuda()
- model.feature = model.feature.cuda()
- # import ipdb; ipdb.set_trace()
- if params.optimization == 'Adam':
- optimizer = torch.optim.Adam(model.parameters(), lr=params.lr)
- elif params.optimization == 'SGD':
- optimizer = torch.optim.SGD(model.parameters(), lr=params.lr)
- elif params.optimization == 'Nesterov':
- optimizer = torch.optim.SGD(model.parameters(), lr=params.lr, nesterov=True, momentum=0.9, weight_decay=params.wd)
- else:
- raise ValueError('Unknown optimization, please define by yourself')
- if params.json_seed is not None:
- params.checkpoint_dir = '%s/checkpoints/%s_%s/%s_%s_%s' %(configs.save_dir, params.dataset, params.json_seed, params.date, params.model, params.method)
- else:
- params.checkpoint_dir = '%s/checkpoints/%s/%s_%s_%s' %(configs.save_dir, params.dataset, params.date, params.model, params.method)
- if params.train_aug:
- params.checkpoint_dir += '_aug'
- params.checkpoint_dir += '_%dway_%dshot_%dquery' %( params.train_n_way, params.n_shot, params.n_query)
- params.checkpoint_dir += '_%d'%image_size
-
- ## Track bn stats
- if params.tracking:
- params.checkpoint_dir += '_tracking'
- ## Use subset of training data
- if params.firstk > 0:
- params.checkpoint_dir += ('_first'+str(params.firstk))
- ## Use grey image
- if params.grey:
- params.checkpoint_dir += '_grey'
- ## Use low_res image
- if params.low_res:
- params.checkpoint_dir += '_low_res'
- ## Add jigsaw and rotation
- if params.jigsaw and params.rotation:
- params.checkpoint_dir += '_jigsaw_lbda%.2f_rotation_lbda%.2f'%(params.lbda_jigsaw, params.lbda_rotation)
- ## Add jigsaw
- elif params.jigsaw:
- params.checkpoint_dir += '_jigsaw_lbda%.2f'%(params.lbda)
- ## Add rotation
- elif params.rotation:
- params.checkpoint_dir += '_rotation_lbda%.2f'%(params.lbda)
- if params.semi_sup:
- params.checkpoint_dir += '_semi_sup%.2f'%(params.lbda)
- if params.dataset_unlabel:
- params.checkpoint_dir += '_dataset_unlabel=%s'%("".join(params.dataset_unlabel))
- params.checkpoint_dir += '_sup_ratio=%d'%(params.sup_ratio)
- params.checkpoint_dir += params.optimization
- params.checkpoint_dir += '_lr%.4f'%(params.lr)
- if params.finetune:
- params.checkpoint_dir += '_finetune'
- if params.random:
- params.checkpoint_dir = 'checkpoints/'+params.dataset+'/random'
- if params.debug:
- params.checkpoint_dir = 'checkpoints/'+params.dataset+'/debug'
- print('Checkpoint path:',params.checkpoint_dir)
- if not os.path.isdir(params.checkpoint_dir):
- os.makedirs(params.checkpoint_dir)
- start_epoch = params.start_epoch
- stop_epoch = params.stop_epoch
- if params.method == 'maml' or params.method == 'maml_approx' :
- stop_epoch = params.stop_epoch * model.n_task #maml use multiple tasks in one update
- if params.resume:
- resume_file = get_resume_file(params.checkpoint_dir)
- if resume_file is not None:
- tmp = torch.load(resume_file)
- start_epoch = tmp['epoch']+1
- model.load_state_dict(tmp['state'])
- optimizer.load_state_dict(tmp['optimizer'])
- del tmp
- if not params.run_name:
- raise Exception("Resume run name not given.")
- print("Resuming run %s from epoch %d" % (params.run_name, start_epoch))
- wandb.init(config=vars(params), project="FSL-SSL", entity="meta-learners", id=params.run_name, resume=True)
- wandb.watch(model)
- if params.loadfile != '':
- print('Loading model from: ' + params.loadfile)
- checkpoint = torch.load(params.loadfile)
- ## remove last layer for baseline
- pretrained_dict = {k: v for k, v in checkpoint['state'].items() if 'classifier' not in k and 'loss_fn' not in k}
- # import ipdb; ipdb.set_trace()
- # print(pretrained_dict)
- print('Load model from:',params.loadfile)
- model.load_state_dict(pretrained_dict, strict=False)
- if not params.only_test:
- if not params.resume:
- json.dump(vars(params), open(params.checkpoint_dir+'/configs.json','w'))
- wandb.init(config=vars(params), project="FSL-SSL", entity="meta-learners")
- wandb.run.name = wandb.run.id if not params.run_name else params.run_name
- wandb.watch(model)
-
- train(base_loader, val_loader, model, optimizer, start_epoch, stop_epoch, params, base_loader_u, val_loader_u, params.semi_sup)
-
- logger.log_hyperparams(vars(params))
- for fn in [get_resume_file, get_best_file]:
- print(fn)
- split = 'novel'
- if params.save_iter != -1:
- split_str = split + "_" +str(params.save_iter)
- else:
- split_str = split
- few_shot_params = dict(n_way = params.test_n_way , n_support = params.n_shot)
- acc_all = []
- if params.loadfile != '':
- modelfile = params.loadfile
- checkpoint_dir = params.loadfile
- else:
- checkpoint_dir = params.checkpoint_dir
- if params.save_iter != -1:
- modelfile = get_assigned_file(checkpoint_dir,params.save_iter)
- else:
- modelfile = fn(checkpoint_dir)
- if params.method in ['maml', 'maml_approx']:
- if modelfile is not None:
- tmp = torch.load(modelfile)
- state = tmp['state']
- state_keys = list(state.keys())
- for i, key in enumerate(state_keys):
- if "feature." in key:
- newkey = key.replace("feature.","") # an architecture model has attribute 'feature', load architecture feature to backbone by casting name from 'feature.trunk.xx' to 'trunk.xx'
- state[newkey] = state.pop(key)
- else:
- state.pop(key)
- # model.load_state_dict(tmp['state'], strict=False)
- model.feature.load_state_dict(tmp['state'])
- print('modelfile:',modelfile)
- datamgr = SetDataManager(image_size, n_eposide = test_iter_num, n_query = 15 , **few_shot_params, isAircraft=isAircraft, grey=params.grey, low_res=params.low_res)
- loadfile = configs.data_dir[params.dataset] + split + '.json'
- novel_loader = datamgr.get_data_loader( loadfile, aug = False)
- if params.adaptation:
- model.task_update_num = 100 #We perform adaptation on MAML simply by updating more times.
- model.eval()
- acc_mean, acc_std = model.test_loop( novel_loader, return_std = True)
- print(acc_mean, acc_std)
- else:
- tmp = torch.load(modelfile)
- state = tmp['state']
- state_keys = list(state.keys())
- for i, key in enumerate(state_keys):
- if "feature." in key:
- newkey = key.replace("feature.","") # an architecture model has attribute 'feature', load architecture feature to backbone by casting name from 'feature.trunk.xx' to 'trunk.xx'
- state[newkey] = state.pop(key)
- else:
- state.pop(key)
- model.feature.load_state_dict(state)
- model.feature.eval()
- model = model.cuda()
- model.feature = model.feature.cuda()
- model.eval()
- if params.semi_sup:
- print("Performing supervised + semi-supervised inference...")
- else:
- print("Performing inference...")
- acc_mean, acc_std = model.test_loop( test_loader, semi_sup=params.semi_sup, proto_only=True)
- if not params.only_test:
- wandb.log({"test/acc": acc_mean})
-
- logger.log_metrics({"test/acc": acc_mean})
- out_dir = os.path.join( checkpoint_dir.replace("checkpoints","results"))
- os.makedirs(out_dir, exist_ok=True)
- with open(os.path.join( checkpoint_dir.replace("checkpoints","results"), split_str +"_test.txt") , 'a') as f:
- timestamp = time.strftime("%Y%m%d-%H%M%S", time.localtime())
- aug_str = '-aug' if params.train_aug else ''
- aug_str += '-adapted' if params.adaptation else ''
- exp_setting = '%s-%s-%s-%s%s %sshot %sway_train %sway_test' %(params.dataset, split_str, params.model, params.method, aug_str , params.n_shot , params.train_n_way, params.test_n_way )
- acc_str = '%d Test Acc = %4.2f%% +- %4.2f%%' %(test_iter_num, acc_mean, 1.96* acc_std/np.sqrt(test_iter_num))
- f.write( 'Time: %s, Setting: %s, Acc: %s \n' %(timestamp,exp_setting,acc_str) )
|