Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

models.py 21 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
  1. import math
  2. import torch
  3. from torch import nn
  4. from torch.nn import functional as F
  5. import commons
  6. import modules
  7. import attentions
  8. import monotonic_align
  9. from torch.nn import Conv1d, ConvTranspose1d, Conv2d
  10. from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
  11. from commons import init_weights, get_padding
  12. class StochasticDurationPredictor(nn.Module):
  13. def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
  14. super().__init__()
  15. filter_channels = in_channels # it needs to be removed from future version.
  16. self.in_channels = in_channels
  17. self.filter_channels = filter_channels
  18. self.kernel_size = kernel_size
  19. self.p_dropout = p_dropout
  20. self.n_flows = n_flows
  21. self.gin_channels = gin_channels
  22. self.log_flow = modules.Log()
  23. self.flows = nn.ModuleList()
  24. self.flows.append(modules.ElementwiseAffine(2))
  25. for i in range(n_flows):
  26. self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
  27. self.flows.append(modules.Flip())
  28. self.post_pre = nn.Conv1d(1, filter_channels, 1)
  29. self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
  30. self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
  31. self.post_flows = nn.ModuleList()
  32. self.post_flows.append(modules.ElementwiseAffine(2))
  33. for i in range(4):
  34. self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
  35. self.post_flows.append(modules.Flip())
  36. self.pre = nn.Conv1d(in_channels, filter_channels, 1)
  37. self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
  38. self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
  39. if gin_channels != 0:
  40. self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
  41. def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
  42. x = torch.detach(x)
  43. x = self.pre(x)
  44. if g is not None:
  45. g = torch.detach(g)
  46. x = x + self.cond(g)
  47. x = self.convs(x, x_mask)
  48. x = self.proj(x) * x_mask
  49. if not reverse:
  50. flows = self.flows
  51. assert w is not None
  52. logdet_tot_q = 0
  53. h_w = self.post_pre(w)
  54. h_w = self.post_convs(h_w, x_mask)
  55. h_w = self.post_proj(h_w) * x_mask
  56. e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
  57. z_q = e_q
  58. for flow in self.post_flows:
  59. z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
  60. logdet_tot_q += logdet_q
  61. z_u, z1 = torch.split(z_q, [1, 1], 1)
  62. u = torch.sigmoid(z_u) * x_mask
  63. z0 = (w - u) * x_mask
  64. logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2])
  65. logq = torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q ** 2)) * x_mask, [1, 2]) - logdet_tot_q
  66. logdet_tot = 0
  67. z0, logdet = self.log_flow(z0, x_mask)
  68. logdet_tot += logdet
  69. z = torch.cat([z0, z1], 1)
  70. for flow in flows:
  71. z, logdet = flow(z, x_mask, g=x, reverse=reverse)
  72. logdet_tot = logdet_tot + logdet
  73. nll = torch.sum(0.5 * (math.log(2 * math.pi) + (z ** 2)) * x_mask, [1, 2]) - logdet_tot
  74. return nll + logq # [b]
  75. else:
  76. flows = list(reversed(self.flows))
  77. flows = flows[:-2] + [flows[-1]] # remove a useless vflow
  78. z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
  79. for flow in flows:
  80. z = flow(z, x_mask, g=x, reverse=reverse)
  81. z0, z1 = torch.split(z, [1, 1], 1)
  82. logw = z0
  83. return logw
  84. class DurationPredictor(nn.Module):
  85. def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0):
  86. super().__init__()
  87. self.in_channels = in_channels
  88. self.filter_channels = filter_channels
  89. self.kernel_size = kernel_size
  90. self.p_dropout = p_dropout
  91. self.gin_channels = gin_channels
  92. self.drop = nn.Dropout(p_dropout)
  93. self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
  94. self.norm_1 = modules.LayerNorm(filter_channels)
  95. self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
  96. self.norm_2 = modules.LayerNorm(filter_channels)
  97. self.proj = nn.Conv1d(filter_channels, 1, 1)
  98. if gin_channels != 0:
  99. self.cond = nn.Conv1d(gin_channels, in_channels, 1)
  100. def forward(self, x, x_mask, g=None):
  101. x = torch.detach(x)
  102. if g is not None:
  103. g = torch.detach(g)
  104. x = x + self.cond(g)
  105. x = self.conv_1(x * x_mask)
  106. x = torch.relu(x)
  107. x = self.norm_1(x)
  108. x = self.drop(x)
  109. x = self.conv_2(x * x_mask)
  110. x = torch.relu(x)
  111. x = self.norm_2(x)
  112. x = self.drop(x)
  113. x = self.proj(x * x_mask)
  114. return x * x_mask
  115. class TextEncoder(nn.Module):
  116. def __init__(self,
  117. n_vocab,
  118. out_channels,
  119. hidden_channels,
  120. filter_channels,
  121. n_heads,
  122. n_layers,
  123. kernel_size,
  124. p_dropout):
  125. super().__init__()
  126. self.n_vocab = n_vocab
  127. self.out_channels = out_channels
  128. self.hidden_channels = hidden_channels
  129. self.filter_channels = filter_channels
  130. self.n_heads = n_heads
  131. self.n_layers = n_layers
  132. self.kernel_size = kernel_size
  133. self.p_dropout = p_dropout
  134. if self.n_vocab != 0:
  135. self.emb = nn.Embedding(n_vocab, hidden_channels)
  136. nn.init.normal_(self.emb.weight, 0.0, hidden_channels ** -0.5)
  137. self.encoder = attentions.Encoder(
  138. hidden_channels,
  139. filter_channels,
  140. n_heads,
  141. n_layers,
  142. kernel_size,
  143. p_dropout)
  144. self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
  145. def forward(self, x, x_lengths):
  146. if self.n_vocab != 0:
  147. x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
  148. x = torch.transpose(x, 1, -1) # [b, h, t]
  149. x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
  150. x = self.encoder(x * x_mask, x_mask)
  151. stats = self.proj(x) * x_mask
  152. m, logs = torch.split(stats, self.out_channels, dim=1)
  153. return x, m, logs, x_mask
  154. class ResidualCouplingBlock(nn.Module):
  155. def __init__(self,
  156. channels,
  157. hidden_channels,
  158. kernel_size,
  159. dilation_rate,
  160. n_layers,
  161. n_flows=4,
  162. gin_channels=0):
  163. super().__init__()
  164. self.channels = channels
  165. self.hidden_channels = hidden_channels
  166. self.kernel_size = kernel_size
  167. self.dilation_rate = dilation_rate
  168. self.n_layers = n_layers
  169. self.n_flows = n_flows
  170. self.gin_channels = gin_channels
  171. self.flows = nn.ModuleList()
  172. for i in range(n_flows):
  173. self.flows.append(
  174. modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers,
  175. gin_channels=gin_channels, mean_only=True))
  176. self.flows.append(modules.Flip())
  177. def forward(self, x, x_mask, g=None, reverse=False):
  178. if not reverse:
  179. for flow in self.flows:
  180. x, _ = flow(x, x_mask, g=g, reverse=reverse)
  181. else:
  182. for flow in reversed(self.flows):
  183. x = flow(x, x_mask, g=g, reverse=reverse)
  184. return x
  185. class PosteriorEncoder(nn.Module):
  186. def __init__(self,
  187. in_channels,
  188. out_channels,
  189. hidden_channels,
  190. kernel_size,
  191. dilation_rate,
  192. n_layers,
  193. gin_channels=0):
  194. super().__init__()
  195. self.in_channels = in_channels
  196. self.out_channels = out_channels
  197. self.hidden_channels = hidden_channels
  198. self.kernel_size = kernel_size
  199. self.dilation_rate = dilation_rate
  200. self.n_layers = n_layers
  201. self.gin_channels = gin_channels
  202. self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
  203. self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
  204. self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
  205. def forward(self, x, x_lengths, g=None):
  206. x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
  207. x = self.pre(x) * x_mask
  208. x = self.enc(x, x_mask, g=g)
  209. stats = self.proj(x) * x_mask
  210. m, logs = torch.split(stats, self.out_channels, dim=1)
  211. z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
  212. return z, m, logs, x_mask
  213. class Generator(torch.nn.Module):
  214. def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates,
  215. upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
  216. super(Generator, self).__init__()
  217. self.num_kernels = len(resblock_kernel_sizes)
  218. self.num_upsamples = len(upsample_rates)
  219. self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
  220. resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
  221. self.ups = nn.ModuleList()
  222. for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
  223. self.ups.append(weight_norm(
  224. ConvTranspose1d(upsample_initial_channel // (2 ** i), upsample_initial_channel // (2 ** (i + 1)),
  225. k, u, padding=(k - u) // 2)))
  226. self.resblocks = nn.ModuleList()
  227. for i in range(len(self.ups)):
  228. ch = upsample_initial_channel // (2 ** (i + 1))
  229. for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
  230. self.resblocks.append(resblock(ch, k, d))
  231. self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
  232. self.ups.apply(init_weights)
  233. if gin_channels != 0:
  234. self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
  235. def forward(self, x, g=None):
  236. x = self.conv_pre(x)
  237. if g is not None:
  238. x = x + self.cond(g)
  239. for i in range(self.num_upsamples):
  240. x = F.leaky_relu(x, modules.LRELU_SLOPE)
  241. x = self.ups[i](x)
  242. xs = None
  243. for j in range(self.num_kernels):
  244. if xs is None:
  245. xs = self.resblocks[i * self.num_kernels + j](x)
  246. else:
  247. xs += self.resblocks[i * self.num_kernels + j](x)
  248. x = xs / self.num_kernels
  249. x = F.leaky_relu(x)
  250. x = self.conv_post(x)
  251. x = torch.tanh(x)
  252. return x
  253. def remove_weight_norm(self):
  254. print('Removing weight norm...')
  255. for l in self.ups:
  256. remove_weight_norm(l)
  257. for l in self.resblocks:
  258. l.remove_weight_norm()
  259. class DiscriminatorP(torch.nn.Module):
  260. def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
  261. super(DiscriminatorP, self).__init__()
  262. self.period = period
  263. self.use_spectral_norm = use_spectral_norm
  264. norm_f = weight_norm if use_spectral_norm == False else spectral_norm
  265. self.convs = nn.ModuleList([
  266. norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
  267. norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
  268. norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
  269. norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
  270. norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
  271. ])
  272. self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
  273. def forward(self, x):
  274. fmap = []
  275. # 1d to 2d
  276. b, c, t = x.shape
  277. if t % self.period != 0: # pad first
  278. n_pad = self.period - (t % self.period)
  279. x = F.pad(x, (0, n_pad), "reflect")
  280. t = t + n_pad
  281. x = x.view(b, c, t // self.period, self.period)
  282. for l in self.convs:
  283. x = l(x)
  284. x = F.leaky_relu(x, modules.LRELU_SLOPE)
  285. fmap.append(x)
  286. x = self.conv_post(x)
  287. fmap.append(x)
  288. x = torch.flatten(x, 1, -1)
  289. return x, fmap
  290. class DiscriminatorS(torch.nn.Module):
  291. def __init__(self, use_spectral_norm=False):
  292. super(DiscriminatorS, self).__init__()
  293. norm_f = weight_norm if use_spectral_norm == False else spectral_norm
  294. self.convs = nn.ModuleList([
  295. norm_f(Conv1d(1, 16, 15, 1, padding=7)),
  296. norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
  297. norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
  298. norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
  299. norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
  300. norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
  301. ])
  302. self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
  303. def forward(self, x):
  304. fmap = []
  305. for l in self.convs:
  306. x = l(x)
  307. x = F.leaky_relu(x, modules.LRELU_SLOPE)
  308. fmap.append(x)
  309. x = self.conv_post(x)
  310. fmap.append(x)
  311. x = torch.flatten(x, 1, -1)
  312. return x, fmap
  313. class MultiPeriodDiscriminator(torch.nn.Module):
  314. def __init__(self, use_spectral_norm=False):
  315. super(MultiPeriodDiscriminator, self).__init__()
  316. periods = [2, 3, 5, 7, 11]
  317. discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
  318. discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
  319. self.discriminators = nn.ModuleList(discs)
  320. def forward(self, y, y_hat):
  321. y_d_rs = []
  322. y_d_gs = []
  323. fmap_rs = []
  324. fmap_gs = []
  325. for i, d in enumerate(self.discriminators):
  326. y_d_r, fmap_r = d(y)
  327. y_d_g, fmap_g = d(y_hat)
  328. y_d_rs.append(y_d_r)
  329. y_d_gs.append(y_d_g)
  330. fmap_rs.append(fmap_r)
  331. fmap_gs.append(fmap_g)
  332. return y_d_rs, y_d_gs, fmap_rs, fmap_gs
  333. class SynthesizerTrn(nn.Module):
  334. """
  335. Synthesizer for Training
  336. """
  337. def __init__(self,
  338. n_vocab,
  339. spec_channels,
  340. segment_size,
  341. inter_channels,
  342. hidden_channels,
  343. filter_channels,
  344. n_heads,
  345. n_layers,
  346. kernel_size,
  347. p_dropout,
  348. resblock,
  349. resblock_kernel_sizes,
  350. resblock_dilation_sizes,
  351. upsample_rates,
  352. upsample_initial_channel,
  353. upsample_kernel_sizes,
  354. n_speakers=0,
  355. gin_channels=0,
  356. use_sdp=True,
  357. **kwargs):
  358. super().__init__()
  359. self.n_vocab = n_vocab
  360. self.spec_channels = spec_channels
  361. self.inter_channels = inter_channels
  362. self.hidden_channels = hidden_channels
  363. self.filter_channels = filter_channels
  364. self.n_heads = n_heads
  365. self.n_layers = n_layers
  366. self.kernel_size = kernel_size
  367. self.p_dropout = p_dropout
  368. self.resblock = resblock
  369. self.resblock_kernel_sizes = resblock_kernel_sizes
  370. self.resblock_dilation_sizes = resblock_dilation_sizes
  371. self.upsample_rates = upsample_rates
  372. self.upsample_initial_channel = upsample_initial_channel
  373. self.upsample_kernel_sizes = upsample_kernel_sizes
  374. self.segment_size = segment_size
  375. self.n_speakers = n_speakers
  376. self.gin_channels = gin_channels
  377. self.use_sdp = use_sdp
  378. self.enc_p = TextEncoder(n_vocab,
  379. inter_channels,
  380. hidden_channels,
  381. filter_channels,
  382. n_heads,
  383. n_layers,
  384. kernel_size,
  385. p_dropout)
  386. self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates,
  387. upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
  388. self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16,
  389. gin_channels=gin_channels)
  390. self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
  391. if use_sdp:
  392. self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
  393. else:
  394. self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels)
  395. if n_speakers > 1:
  396. self.emb_g = nn.Embedding(n_speakers, gin_channels)
  397. def forward(self, x, x_lengths, y, y_lengths, sid=None):
  398. x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
  399. if self.n_speakers > 1:
  400. g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
  401. else:
  402. g = None
  403. z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
  404. z_p = self.flow(z, y_mask, g=g)
  405. with torch.no_grad():
  406. # negative cross-entropy
  407. s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t]
  408. neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True) # [b, 1, t_s]
  409. neg_cent2 = torch.matmul(-0.5 * (z_p ** 2).transpose(1, 2),
  410. s_p_sq_r) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
  411. neg_cent3 = torch.matmul(z_p.transpose(1, 2), (m_p * s_p_sq_r)) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
  412. neg_cent4 = torch.sum(-0.5 * (m_p ** 2) * s_p_sq_r, [1], keepdim=True) # [b, 1, t_s]
  413. neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
  414. attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
  415. attn = monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach()
  416. w = attn.sum(2)
  417. if self.use_sdp:
  418. l_length = self.dp(x, x_mask, w, g=g)
  419. l_length = l_length / torch.sum(x_mask)
  420. else:
  421. logw_ = torch.log(w + 1e-6) * x_mask
  422. logw = self.dp(x, x_mask, g=g)
  423. l_length = torch.sum((logw - logw_) ** 2, [1, 2]) / torch.sum(x_mask) # for averaging
  424. # expand prior
  425. m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
  426. logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)
  427. z_slice, ids_slice = commons.rand_slice_segments(z, y_lengths, self.segment_size)
  428. o = self.dec(z_slice, g=g)
  429. return o, l_length, attn, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
  430. def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None):
  431. x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
  432. if self.n_speakers > 1:
  433. g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
  434. else:
  435. g = None
  436. if self.use_sdp:
  437. logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
  438. else:
  439. logw = self.dp(x, x_mask, g=g)
  440. w = torch.exp(logw) * x_mask * length_scale
  441. w_ceil = torch.ceil(w)
  442. y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
  443. y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
  444. attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
  445. attn = commons.generate_path(w_ceil, attn_mask)
  446. m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
  447. logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1,
  448. 2) # [b, t', t], [b, t, d] -> [b, d, t']
  449. z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
  450. z = self.flow(z_p, y_mask, g=g, reverse=True)
  451. o = self.dec((z * y_mask)[:, :, :max_len], g=g)
  452. return o, attn, y_mask, (z, z_p, m_p, logs_p)
  453. def voice_conversion(self, y, y_lengths, sid_src, sid_tgt):
  454. assert self.n_speakers > 1, "n_speakers have to be larger than 1."
  455. g_src = self.emb_g(sid_src).unsqueeze(-1)
  456. g_tgt = self.emb_g(sid_tgt).unsqueeze(-1)
  457. z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src)
  458. z_p = self.flow(z, y_mask, g=g_src)
  459. z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
  460. o_hat = self.dec(z_hat * y_mask, g=g_tgt)
  461. return o_hat, y_mask, (z, z_p, z_hat)
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...