Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

app.py 7.7 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
  1. import json
  2. import os
  3. import re
  4. import librosa
  5. import numpy as np
  6. import torch
  7. from torch import no_grad, LongTensor
  8. import commons
  9. import utils
  10. import gradio as gr
  11. from models import SynthesizerTrn
  12. from text import text_to_sequence, _clean_text
  13. from mel_processing import spectrogram_torch
  14. limitation = os.getenv("SYSTEM") == "spaces" # limit text and audio length in huggingface spaces
  15. def get_text(text, hps, is_phoneme):
  16. text_norm = text_to_sequence(text, hps.symbols, [] if is_phoneme else hps.data.text_cleaners)
  17. if hps.data.add_blank:
  18. text_norm = commons.intersperse(text_norm, 0)
  19. text_norm = LongTensor(text_norm)
  20. return text_norm
  21. def create_tts_fn(model, hps, speaker_ids):
  22. def tts_fn(text, speaker, speed, is_phoneme):
  23. if limitation:
  24. text_len = len(text)
  25. max_len = 500
  26. if is_phoneme:
  27. max_len *= 3
  28. else:
  29. if len(hps.data.text_cleaners) > 0 and hps.data.text_cleaners[0] == "zh_ja_mixture_cleaners":
  30. text_len = len(re.sub("(\[ZH\]|\[JA\])", "", text))
  31. if text_len > max_len:
  32. return "Error: Text is too long", None
  33. speaker_id = speaker_ids[speaker]
  34. stn_tst = get_text(text, hps, is_phoneme)
  35. with no_grad():
  36. x_tst = stn_tst.cuda().unsqueeze(0)
  37. x_tst_lengths = LongTensor([stn_tst.size(0)]).cuda()
  38. sid = LongTensor([speaker_id]).cuda()
  39. audio = model.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8,
  40. length_scale=1.0 / speed)[0][0, 0].data.cpu().float().numpy()
  41. del stn_tst, x_tst, x_tst_lengths, sid
  42. return "Success", (hps.data.sampling_rate, audio)
  43. return tts_fn
  44. def create_to_phoneme_fn(hps):
  45. def to_phoneme_fn(text):
  46. return _clean_text(text, hps.data.text_cleaners) if text != "" else ""
  47. return to_phoneme_fn
  48. css = """
  49. #advanced-btn {
  50. color: white;
  51. border-color: black;
  52. background: black;
  53. font-size: .7rem !important;
  54. line-height: 19px;
  55. margin-top: 24px;
  56. margin-bottom: 12px;
  57. padding: 2px 8px;
  58. border-radius: 14px !important;
  59. }
  60. #advanced-options {
  61. display: none;
  62. margin-bottom: 20px;
  63. }
  64. """
  65. if __name__ == '__main__':
  66. models_tts = []
  67. models_vc = []
  68. models_soft_vc = []
  69. # {"title": "ハミダシクリエイティブ", "lang": "日本語 (Japanese)", "example": "こんにちは。", "type": "vits"}
  70. name = 'プロセカ TTS'
  71. lang = '日本語 (Japanese)'
  72. example = 'こんにちは。'
  73. config_path = f"saved_model/config.json"
  74. model_path = f"saved_model/model.pth"
  75. cover_path = f"saved_model/cover.png"
  76. hps = utils.get_hparams_from_file(config_path)
  77. model = SynthesizerTrn(
  78. len(hps.symbols),
  79. hps.data.filter_length // 2 + 1,
  80. hps.train.segment_size // hps.data.hop_length,
  81. n_speakers=hps.data.n_speakers,
  82. **hps.model).cuda()
  83. utils.load_checkpoint(model_path, model, None)
  84. model.eval()
  85. speaker_ids = [sid for sid, name in enumerate(hps.speakers) if name != "None"]
  86. speakers = [name for sid, name in enumerate(hps.speakers) if name != "None"]
  87. t = 'vits'
  88. models_tts.append((name, cover_path, speakers, lang, example,
  89. hps.symbols, create_tts_fn(model, hps, speaker_ids),
  90. create_to_phoneme_fn(hps)))
  91. app = gr.Blocks(css=css)
  92. with app:
  93. gr.Markdown("# Project Sekai TTS Using VITS Model\n\n"
  94. "![visitor badge](https://visitor-badge.glitch.me/badge?page_id=kdrkdrkdr.ProsekaTTS)\n\n")
  95. with gr.Tabs():
  96. with gr.TabItem("TTS"):
  97. with gr.Tabs():
  98. for i, (name, cover_path, speakers, lang, example, symbols, tts_fn,
  99. to_phoneme_fn) in enumerate(models_tts):
  100. with gr.TabItem(f"Proseka"):
  101. with gr.Column():
  102. gr.Markdown(f"## {name}\n\n"
  103. f"![cover](file/{cover_path})\n\n"
  104. f"lang: {lang}")
  105. tts_input1 = gr.TextArea(label="Text (500 words limitation)", value=example,
  106. elem_id=f"tts-input{i}")
  107. tts_input2 = gr.Dropdown(label="Speaker", choices=speakers,
  108. type="index", value=speakers[0])
  109. tts_input3 = gr.Slider(label="Speed", value=1, minimum=0.1, maximum=2, step=0.1)
  110. with gr.Accordion(label="Advanced Options", open=False):
  111. phoneme_input = gr.Checkbox(value=False, label="Phoneme input")
  112. to_phoneme_btn = gr.Button("Covert text to phoneme")
  113. phoneme_list = gr.Dataset(label="Phoneme list", components=[tts_input1],
  114. samples=[[x] for x in symbols],
  115. elem_id=f"phoneme-list{i}")
  116. phoneme_list_json = gr.Json(value=symbols, visible=False)
  117. tts_submit = gr.Button("Generate", variant="primary")
  118. tts_output1 = gr.Textbox(label="Output Message")
  119. tts_output2 = gr.Audio(label="Output Audio")
  120. tts_submit.click(tts_fn, [tts_input1, tts_input2, tts_input3, phoneme_input],
  121. [tts_output1, tts_output2])
  122. to_phoneme_btn.click(to_phoneme_fn, [tts_input1], [tts_input1])
  123. phoneme_list.click(None, [phoneme_list, phoneme_list_json], [],
  124. _js=f"""
  125. (i,phonemes) => {{
  126. let root = document.querySelector("body > gradio-app");
  127. if (root.shadowRoot != null)
  128. root = root.shadowRoot;
  129. let text_input = root.querySelector("#tts-input{i}").querySelector("textarea");
  130. let startPos = text_input.selectionStart;
  131. let endPos = text_input.selectionEnd;
  132. let oldTxt = text_input.value;
  133. let result = oldTxt.substring(0, startPos) + phonemes[i] + oldTxt.substring(endPos);
  134. text_input.value = result;
  135. let x = window.scrollX, y = window.scrollY;
  136. text_input.focus();
  137. text_input.selectionStart = startPos + phonemes[i].length;
  138. text_input.selectionEnd = startPos + phonemes[i].length;
  139. text_input.blur();
  140. window.scrollTo(x, y);
  141. return [];
  142. }}""")
  143. gr.Markdown(
  144. "Official User Page \n\n"
  145. "- [https://github.com/kdrkdrkdr/ProsekaTTS](https://github.com/kdrkdrkdr/ProsekaTTS)\n\n"
  146. "Reference \n\n"
  147. "- [https://huggingface.co/spaces/skytnt/moe-tts](https://huggingface.co/spaces/skytnt/moe-tts)"
  148. )
  149. app.queue(concurrency_count=3).launch(show_api=False)
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...