1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
|
- import json
- import os
- import re
- import librosa
- import numpy as np
- import torch
- from torch import no_grad, LongTensor
- import commons
- import utils
- import gradio as gr
- from models import SynthesizerTrn
- from text import text_to_sequence, _clean_text
- from mel_processing import spectrogram_torch
- limitation = os.getenv("SYSTEM") == "spaces" # limit text and audio length in huggingface spaces
- def get_text(text, hps, is_phoneme):
- text_norm = text_to_sequence(text, hps.symbols, [] if is_phoneme else hps.data.text_cleaners)
- if hps.data.add_blank:
- text_norm = commons.intersperse(text_norm, 0)
- text_norm = LongTensor(text_norm)
- return text_norm
- def create_tts_fn(model, hps, speaker_ids):
- def tts_fn(text, speaker, speed, is_phoneme):
- if limitation:
- text_len = len(text)
- max_len = 500
- if is_phoneme:
- max_len *= 3
- else:
- if len(hps.data.text_cleaners) > 0 and hps.data.text_cleaners[0] == "zh_ja_mixture_cleaners":
- text_len = len(re.sub("(\[ZH\]|\[JA\])", "", text))
- if text_len > max_len:
- return "Error: Text is too long", None
- speaker_id = speaker_ids[speaker]
- stn_tst = get_text(text, hps, is_phoneme)
- with no_grad():
- x_tst = stn_tst.cuda().unsqueeze(0)
- x_tst_lengths = LongTensor([stn_tst.size(0)]).cuda()
- sid = LongTensor([speaker_id]).cuda()
- audio = model.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8,
- length_scale=1.0 / speed)[0][0, 0].data.cpu().float().numpy()
- del stn_tst, x_tst, x_tst_lengths, sid
- return "Success", (hps.data.sampling_rate, audio)
- return tts_fn
- def create_to_phoneme_fn(hps):
- def to_phoneme_fn(text):
- return _clean_text(text, hps.data.text_cleaners) if text != "" else ""
- return to_phoneme_fn
- css = """
- #advanced-btn {
- color: white;
- border-color: black;
- background: black;
- font-size: .7rem !important;
- line-height: 19px;
- margin-top: 24px;
- margin-bottom: 12px;
- padding: 2px 8px;
- border-radius: 14px !important;
- }
- #advanced-options {
- display: none;
- margin-bottom: 20px;
- }
- """
- if __name__ == '__main__':
- models_tts = []
- models_vc = []
- models_soft_vc = []
- # {"title": "ハミダシクリエイティブ", "lang": "日本語 (Japanese)", "example": "こんにちは。", "type": "vits"}
- name = 'プロセカ TTS'
- lang = '日本語 (Japanese)'
- example = 'こんにちは。'
- config_path = f"saved_model/config.json"
- model_path = f"saved_model/model.pth"
- cover_path = f"saved_model/cover.png"
- hps = utils.get_hparams_from_file(config_path)
- model = SynthesizerTrn(
- len(hps.symbols),
- hps.data.filter_length // 2 + 1,
- hps.train.segment_size // hps.data.hop_length,
- n_speakers=hps.data.n_speakers,
- **hps.model).cuda()
- utils.load_checkpoint(model_path, model, None)
- model.eval()
- speaker_ids = [sid for sid, name in enumerate(hps.speakers) if name != "None"]
- speakers = [name for sid, name in enumerate(hps.speakers) if name != "None"]
- t = 'vits'
- models_tts.append((name, cover_path, speakers, lang, example,
- hps.symbols, create_tts_fn(model, hps, speaker_ids),
- create_to_phoneme_fn(hps)))
-
- app = gr.Blocks(css=css)
- with app:
- gr.Markdown("# Project Sekai TTS Using VITS Model\n\n"
- "\n\n")
- with gr.Tabs():
- with gr.TabItem("TTS"):
- with gr.Tabs():
- for i, (name, cover_path, speakers, lang, example, symbols, tts_fn,
- to_phoneme_fn) in enumerate(models_tts):
- with gr.TabItem(f"Proseka"):
- with gr.Column():
- gr.Markdown(f"## {name}\n\n"
- f"\n\n"
- f"lang: {lang}")
- tts_input1 = gr.TextArea(label="Text (500 words limitation)", value=example,
- elem_id=f"tts-input{i}")
- tts_input2 = gr.Dropdown(label="Speaker", choices=speakers,
- type="index", value=speakers[0])
- tts_input3 = gr.Slider(label="Speed", value=1, minimum=0.1, maximum=2, step=0.1)
- with gr.Accordion(label="Advanced Options", open=False):
- phoneme_input = gr.Checkbox(value=False, label="Phoneme input")
- to_phoneme_btn = gr.Button("Covert text to phoneme")
- phoneme_list = gr.Dataset(label="Phoneme list", components=[tts_input1],
- samples=[[x] for x in symbols],
- elem_id=f"phoneme-list{i}")
- phoneme_list_json = gr.Json(value=symbols, visible=False)
- tts_submit = gr.Button("Generate", variant="primary")
- tts_output1 = gr.Textbox(label="Output Message")
- tts_output2 = gr.Audio(label="Output Audio")
- tts_submit.click(tts_fn, [tts_input1, tts_input2, tts_input3, phoneme_input],
- [tts_output1, tts_output2])
- to_phoneme_btn.click(to_phoneme_fn, [tts_input1], [tts_input1])
- phoneme_list.click(None, [phoneme_list, phoneme_list_json], [],
- _js=f"""
- (i,phonemes) => {{
- let root = document.querySelector("body > gradio-app");
- if (root.shadowRoot != null)
- root = root.shadowRoot;
- let text_input = root.querySelector("#tts-input{i}").querySelector("textarea");
- let startPos = text_input.selectionStart;
- let endPos = text_input.selectionEnd;
- let oldTxt = text_input.value;
- let result = oldTxt.substring(0, startPos) + phonemes[i] + oldTxt.substring(endPos);
- text_input.value = result;
- let x = window.scrollX, y = window.scrollY;
- text_input.focus();
- text_input.selectionStart = startPos + phonemes[i].length;
- text_input.selectionEnd = startPos + phonemes[i].length;
- text_input.blur();
- window.scrollTo(x, y);
- return [];
- }}""")
-
- gr.Markdown(
- "Official User Page \n\n"
- "- [https://github.com/kdrkdrkdr/ProsekaTTS](https://github.com/kdrkdrkdr/ProsekaTTS)\n\n"
- "Reference \n\n"
- "- [https://huggingface.co/spaces/skytnt/moe-tts](https://huggingface.co/spaces/skytnt/moe-tts)"
-
- )
- app.queue(concurrency_count=3).launch(show_api=False)
|