Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

modules.py 13 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
  1. import copy
  2. import math
  3. import numpy as np
  4. import scipy
  5. import torch
  6. from torch import nn
  7. from torch.nn import functional as F
  8. from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
  9. from torch.nn.utils import weight_norm, remove_weight_norm
  10. import commons
  11. from commons import init_weights, get_padding
  12. from transforms import piecewise_rational_quadratic_transform
  13. LRELU_SLOPE = 0.1
  14. class LayerNorm(nn.Module):
  15. def __init__(self, channels, eps=1e-5):
  16. super().__init__()
  17. self.channels = channels
  18. self.eps = eps
  19. self.gamma = nn.Parameter(torch.ones(channels))
  20. self.beta = nn.Parameter(torch.zeros(channels))
  21. def forward(self, x):
  22. x = x.transpose(1, -1)
  23. x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
  24. return x.transpose(1, -1)
  25. class ConvReluNorm(nn.Module):
  26. def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
  27. super().__init__()
  28. self.in_channels = in_channels
  29. self.hidden_channels = hidden_channels
  30. self.out_channels = out_channels
  31. self.kernel_size = kernel_size
  32. self.n_layers = n_layers
  33. self.p_dropout = p_dropout
  34. assert n_layers > 1, "Number of layers should be larger than 0."
  35. self.conv_layers = nn.ModuleList()
  36. self.norm_layers = nn.ModuleList()
  37. self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
  38. self.norm_layers.append(LayerNorm(hidden_channels))
  39. self.relu_drop = nn.Sequential(
  40. nn.ReLU(),
  41. nn.Dropout(p_dropout))
  42. for _ in range(n_layers-1):
  43. self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
  44. self.norm_layers.append(LayerNorm(hidden_channels))
  45. self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
  46. self.proj.weight.data.zero_()
  47. self.proj.bias.data.zero_()
  48. def forward(self, x, x_mask):
  49. x_org = x
  50. for i in range(self.n_layers):
  51. x = self.conv_layers[i](x * x_mask)
  52. x = self.norm_layers[i](x)
  53. x = self.relu_drop(x)
  54. x = x_org + self.proj(x)
  55. return x * x_mask
  56. class DDSConv(nn.Module):
  57. """
  58. Dialted and Depth-Separable Convolution
  59. """
  60. def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
  61. super().__init__()
  62. self.channels = channels
  63. self.kernel_size = kernel_size
  64. self.n_layers = n_layers
  65. self.p_dropout = p_dropout
  66. self.drop = nn.Dropout(p_dropout)
  67. self.convs_sep = nn.ModuleList()
  68. self.convs_1x1 = nn.ModuleList()
  69. self.norms_1 = nn.ModuleList()
  70. self.norms_2 = nn.ModuleList()
  71. for i in range(n_layers):
  72. dilation = kernel_size ** i
  73. padding = (kernel_size * dilation - dilation) // 2
  74. self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
  75. groups=channels, dilation=dilation, padding=padding
  76. ))
  77. self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
  78. self.norms_1.append(LayerNorm(channels))
  79. self.norms_2.append(LayerNorm(channels))
  80. def forward(self, x, x_mask, g=None):
  81. if g is not None:
  82. x = x + g
  83. for i in range(self.n_layers):
  84. y = self.convs_sep[i](x * x_mask)
  85. y = self.norms_1[i](y)
  86. y = F.gelu(y)
  87. y = self.convs_1x1[i](y)
  88. y = self.norms_2[i](y)
  89. y = F.gelu(y)
  90. y = self.drop(y)
  91. x = x + y
  92. return x * x_mask
  93. class WN(torch.nn.Module):
  94. def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
  95. super(WN, self).__init__()
  96. assert(kernel_size % 2 == 1)
  97. self.hidden_channels =hidden_channels
  98. self.kernel_size = kernel_size,
  99. self.dilation_rate = dilation_rate
  100. self.n_layers = n_layers
  101. self.gin_channels = gin_channels
  102. self.p_dropout = p_dropout
  103. self.in_layers = torch.nn.ModuleList()
  104. self.res_skip_layers = torch.nn.ModuleList()
  105. self.drop = nn.Dropout(p_dropout)
  106. if gin_channels != 0:
  107. cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
  108. self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
  109. for i in range(n_layers):
  110. dilation = dilation_rate ** i
  111. padding = int((kernel_size * dilation - dilation) / 2)
  112. in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
  113. dilation=dilation, padding=padding)
  114. in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
  115. self.in_layers.append(in_layer)
  116. # last one is not necessary
  117. if i < n_layers - 1:
  118. res_skip_channels = 2 * hidden_channels
  119. else:
  120. res_skip_channels = hidden_channels
  121. res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
  122. res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
  123. self.res_skip_layers.append(res_skip_layer)
  124. def forward(self, x, x_mask, g=None, **kwargs):
  125. output = torch.zeros_like(x)
  126. n_channels_tensor = torch.IntTensor([self.hidden_channels])
  127. if g is not None:
  128. g = self.cond_layer(g)
  129. for i in range(self.n_layers):
  130. x_in = self.in_layers[i](x)
  131. if g is not None:
  132. cond_offset = i * 2 * self.hidden_channels
  133. g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
  134. else:
  135. g_l = torch.zeros_like(x_in)
  136. acts = commons.fused_add_tanh_sigmoid_multiply(
  137. x_in,
  138. g_l,
  139. n_channels_tensor)
  140. acts = self.drop(acts)
  141. res_skip_acts = self.res_skip_layers[i](acts)
  142. if i < self.n_layers - 1:
  143. res_acts = res_skip_acts[:,:self.hidden_channels,:]
  144. x = (x + res_acts) * x_mask
  145. output = output + res_skip_acts[:,self.hidden_channels:,:]
  146. else:
  147. output = output + res_skip_acts
  148. return output * x_mask
  149. def remove_weight_norm(self):
  150. if self.gin_channels != 0:
  151. torch.nn.utils.remove_weight_norm(self.cond_layer)
  152. for l in self.in_layers:
  153. torch.nn.utils.remove_weight_norm(l)
  154. for l in self.res_skip_layers:
  155. torch.nn.utils.remove_weight_norm(l)
  156. class ResBlock1(torch.nn.Module):
  157. def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
  158. super(ResBlock1, self).__init__()
  159. self.convs1 = nn.ModuleList([
  160. weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
  161. padding=get_padding(kernel_size, dilation[0]))),
  162. weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
  163. padding=get_padding(kernel_size, dilation[1]))),
  164. weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
  165. padding=get_padding(kernel_size, dilation[2])))
  166. ])
  167. self.convs1.apply(init_weights)
  168. self.convs2 = nn.ModuleList([
  169. weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
  170. padding=get_padding(kernel_size, 1))),
  171. weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
  172. padding=get_padding(kernel_size, 1))),
  173. weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
  174. padding=get_padding(kernel_size, 1)))
  175. ])
  176. self.convs2.apply(init_weights)
  177. def forward(self, x, x_mask=None):
  178. for c1, c2 in zip(self.convs1, self.convs2):
  179. xt = F.leaky_relu(x, LRELU_SLOPE)
  180. if x_mask is not None:
  181. xt = xt * x_mask
  182. xt = c1(xt)
  183. xt = F.leaky_relu(xt, LRELU_SLOPE)
  184. if x_mask is not None:
  185. xt = xt * x_mask
  186. xt = c2(xt)
  187. x = xt + x
  188. if x_mask is not None:
  189. x = x * x_mask
  190. return x
  191. def remove_weight_norm(self):
  192. for l in self.convs1:
  193. remove_weight_norm(l)
  194. for l in self.convs2:
  195. remove_weight_norm(l)
  196. class ResBlock2(torch.nn.Module):
  197. def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
  198. super(ResBlock2, self).__init__()
  199. self.convs = nn.ModuleList([
  200. weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
  201. padding=get_padding(kernel_size, dilation[0]))),
  202. weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
  203. padding=get_padding(kernel_size, dilation[1])))
  204. ])
  205. self.convs.apply(init_weights)
  206. def forward(self, x, x_mask=None):
  207. for c in self.convs:
  208. xt = F.leaky_relu(x, LRELU_SLOPE)
  209. if x_mask is not None:
  210. xt = xt * x_mask
  211. xt = c(xt)
  212. x = xt + x
  213. if x_mask is not None:
  214. x = x * x_mask
  215. return x
  216. def remove_weight_norm(self):
  217. for l in self.convs:
  218. remove_weight_norm(l)
  219. class Log(nn.Module):
  220. def forward(self, x, x_mask, reverse=False, **kwargs):
  221. if not reverse:
  222. y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
  223. logdet = torch.sum(-y, [1, 2])
  224. return y, logdet
  225. else:
  226. x = torch.exp(x) * x_mask
  227. return x
  228. class Flip(nn.Module):
  229. def forward(self, x, *args, reverse=False, **kwargs):
  230. x = torch.flip(x, [1])
  231. if not reverse:
  232. logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
  233. return x, logdet
  234. else:
  235. return x
  236. class ElementwiseAffine(nn.Module):
  237. def __init__(self, channels):
  238. super().__init__()
  239. self.channels = channels
  240. self.m = nn.Parameter(torch.zeros(channels,1))
  241. self.logs = nn.Parameter(torch.zeros(channels,1))
  242. def forward(self, x, x_mask, reverse=False, **kwargs):
  243. if not reverse:
  244. y = self.m + torch.exp(self.logs) * x
  245. y = y * x_mask
  246. logdet = torch.sum(self.logs * x_mask, [1,2])
  247. return y, logdet
  248. else:
  249. x = (x - self.m) * torch.exp(-self.logs) * x_mask
  250. return x
  251. class ResidualCouplingLayer(nn.Module):
  252. def __init__(self,
  253. channels,
  254. hidden_channels,
  255. kernel_size,
  256. dilation_rate,
  257. n_layers,
  258. p_dropout=0,
  259. gin_channels=0,
  260. mean_only=False):
  261. assert channels % 2 == 0, "channels should be divisible by 2"
  262. super().__init__()
  263. self.channels = channels
  264. self.hidden_channels = hidden_channels
  265. self.kernel_size = kernel_size
  266. self.dilation_rate = dilation_rate
  267. self.n_layers = n_layers
  268. self.half_channels = channels // 2
  269. self.mean_only = mean_only
  270. self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
  271. self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
  272. self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
  273. self.post.weight.data.zero_()
  274. self.post.bias.data.zero_()
  275. def forward(self, x, x_mask, g=None, reverse=False):
  276. x0, x1 = torch.split(x, [self.half_channels]*2, 1)
  277. h = self.pre(x0) * x_mask
  278. h = self.enc(h, x_mask, g=g)
  279. stats = self.post(h) * x_mask
  280. if not self.mean_only:
  281. m, logs = torch.split(stats, [self.half_channels]*2, 1)
  282. else:
  283. m = stats
  284. logs = torch.zeros_like(m)
  285. if not reverse:
  286. x1 = m + x1 * torch.exp(logs) * x_mask
  287. x = torch.cat([x0, x1], 1)
  288. logdet = torch.sum(logs, [1,2])
  289. return x, logdet
  290. else:
  291. x1 = (x1 - m) * torch.exp(-logs) * x_mask
  292. x = torch.cat([x0, x1], 1)
  293. return x
  294. class ConvFlow(nn.Module):
  295. def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0):
  296. super().__init__()
  297. self.in_channels = in_channels
  298. self.filter_channels = filter_channels
  299. self.kernel_size = kernel_size
  300. self.n_layers = n_layers
  301. self.num_bins = num_bins
  302. self.tail_bound = tail_bound
  303. self.half_channels = in_channels // 2
  304. self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
  305. self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.)
  306. self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1)
  307. self.proj.weight.data.zero_()
  308. self.proj.bias.data.zero_()
  309. def forward(self, x, x_mask, g=None, reverse=False):
  310. x0, x1 = torch.split(x, [self.half_channels]*2, 1)
  311. h = self.pre(x0)
  312. h = self.convs(h, x_mask, g=g)
  313. h = self.proj(h) * x_mask
  314. b, c, t = x0.shape
  315. h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
  316. unnormalized_widths = h[..., :self.num_bins] / math.sqrt(self.filter_channels)
  317. unnormalized_heights = h[..., self.num_bins:2*self.num_bins] / math.sqrt(self.filter_channels)
  318. unnormalized_derivatives = h[..., 2 * self.num_bins:]
  319. x1, logabsdet = piecewise_rational_quadratic_transform(x1,
  320. unnormalized_widths,
  321. unnormalized_heights,
  322. unnormalized_derivatives,
  323. inverse=reverse,
  324. tails='linear',
  325. tail_bound=self.tail_bound
  326. )
  327. x = torch.cat([x0, x1], 1) * x_mask
  328. logdet = torch.sum(logabsdet * x_mask, [1,2])
  329. if not reverse:
  330. return x, logdet
  331. else:
  332. return x
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...