1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
|
- import gradio as gr
- import torch
- import numpy as np
- import modin.pandas as pd
- from PIL import Image
- from diffusers import DiffusionPipeline, StableDiffusion3Pipeline
- from huggingface_hub import hf_hub_download
- device = 'cuda' if torch.cuda.is_available() else 'cpu'
- torch.cuda.max_memory_allocated(device=device)
- torch.cuda.empty_cache()
- #torch.cuda.max_memory_allocated(device=device)
- pipe = DiffusionPipeline.from_pretrained("circulus/canvers-fusionXL-v1", torch_dtype=torch.bfloat16).to(device)
- pipe.enable_xformers_memory_efficient_attention()
- # Open it for reduce GPU memory usage
- #pipe.enable_model_cpu_offload()
- pipe.vae.enable_slicing()
- pipe.vae.enable_tiling()
- torch.cuda.empty_cache()
- #torch.cuda.max_memory_allocated(device=device)
- refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.bfloat16, variant="fp16").to(device)
- refiner.enable_xformers_memory_efficient_attention()
- torch.cuda.empty_cache()
- def genie (Prompt, negative_prompt, height, width, scale, steps, seed, progress=gr.Progress(track_tqdm=True)):
- generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed)
- #generator=np.random.seed(0)
- int_image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale, output_type="latent").images
- image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=.99).images[0]
- torch.cuda.empty_cache()
-
- return image
-
- gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'),
- gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
- gr.Slider(512, 1280, 1024, step=128, label='Height'),
- gr.Slider(512, 1280, 1024, step=128, label='Width'),
- gr.Slider(.5, maximum=15, value=9, step=.25, label='Guidance Scale'),
- gr.Slider(10, maximum=50, value=25, step=5, label='Number of Prior Iterations'),
- gr.Slider(minimum=0, step=1, maximum=9999999999999999, randomize=True, label='Seed: 0 is Random')],
- outputs=gr.Image(label='Generated Image'),
- title="Manju Dream Booth V2.5 with Fusion XL - GPU",
- description="<br><br><b/>Warning: This Demo is capable of producing NSFW content.",
- article = "If You Enjoyed this Demo and would like to Donate, you can send any amount to any of these Wallets. <br><br>SHIB (BEP20): 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>PayPal: https://www.paypal.me/ManjushriBodhisattva <br>ETH: 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>DOGE: D9QdVPtcU1EFH8jDC8jhU9uBcSTqUiA8h6<br><br>Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").launch(debug=True)
|