Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

datasets.py 43 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
  1. # Dataset utils and dataloaders
  2. import glob
  3. import logging
  4. import math
  5. import os
  6. import random
  7. import shutil
  8. import time
  9. from itertools import repeat
  10. from multiprocessing.pool import ThreadPool
  11. from pathlib import Path
  12. from threading import Thread
  13. import cv2
  14. import numpy as np
  15. import torch
  16. import torch.nn.functional as F
  17. from PIL import Image, ExifTags
  18. from torch.utils.data import Dataset
  19. from tqdm import tqdm
  20. from utils.general import xyxy2xywh, xywh2xyxy, xywhn2xyxy, xyn2xy, segment2box, segments2boxes, resample_segments, \
  21. clean_str
  22. from utils.torch_utils import torch_distributed_zero_first
  23. # Parameters
  24. help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
  25. img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng', 'webp'] # acceptable image suffixes
  26. vid_formats = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv'] # acceptable video suffixes
  27. logger = logging.getLogger(__name__)
  28. # Get orientation exif tag
  29. for orientation in ExifTags.TAGS.keys():
  30. if ExifTags.TAGS[orientation] == 'Orientation':
  31. break
  32. def get_hash(files):
  33. # Returns a single hash value of a list of files
  34. return sum(os.path.getsize(f) for f in files if os.path.isfile(f))
  35. def exif_size(img):
  36. # Returns exif-corrected PIL size
  37. s = img.size # (width, height)
  38. try:
  39. rotation = dict(img._getexif().items())[orientation]
  40. if rotation == 6: # rotation 270
  41. s = (s[1], s[0])
  42. elif rotation == 8: # rotation 90
  43. s = (s[1], s[0])
  44. except:
  45. pass
  46. return s
  47. def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=False, cache=False, pad=0.0, rect=False,
  48. rank=-1, world_size=1, workers=8, image_weights=False, quad=False, prefix=''):
  49. # Make sure only the first process in DDP process the dataset first, and the following others can use the cache
  50. with torch_distributed_zero_first(rank):
  51. dataset = LoadImagesAndLabels(path, imgsz, batch_size,
  52. augment=augment, # augment images
  53. hyp=hyp, # augmentation hyperparameters
  54. rect=rect, # rectangular training
  55. cache_images=cache,
  56. single_cls=opt.single_cls,
  57. stride=int(stride),
  58. pad=pad,
  59. image_weights=image_weights,
  60. prefix=prefix)
  61. batch_size = min(batch_size, len(dataset))
  62. nw = min([os.cpu_count() // world_size, batch_size if batch_size > 1 else 0, workers]) # number of workers
  63. sampler = torch.utils.data.distributed.DistributedSampler(dataset) if rank != -1 else None
  64. loader = torch.utils.data.DataLoader if image_weights else InfiniteDataLoader
  65. # Use torch.utils.data.DataLoader() if dataset.properties will update during training else InfiniteDataLoader()
  66. dataloader = loader(dataset,
  67. batch_size=batch_size,
  68. num_workers=nw,
  69. sampler=sampler,
  70. pin_memory=True,
  71. collate_fn=LoadImagesAndLabels.collate_fn4 if quad else LoadImagesAndLabels.collate_fn)
  72. return dataloader, dataset
  73. class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader):
  74. """ Dataloader that reuses workers
  75. Uses same syntax as vanilla DataLoader
  76. """
  77. def __init__(self, *args, **kwargs):
  78. super().__init__(*args, **kwargs)
  79. object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
  80. self.iterator = super().__iter__()
  81. def __len__(self):
  82. return len(self.batch_sampler.sampler)
  83. def __iter__(self):
  84. for i in range(len(self)):
  85. yield next(self.iterator)
  86. class _RepeatSampler(object):
  87. """ Sampler that repeats forever
  88. Args:
  89. sampler (Sampler)
  90. """
  91. def __init__(self, sampler):
  92. self.sampler = sampler
  93. def __iter__(self):
  94. while True:
  95. yield from iter(self.sampler)
  96. class LoadImages: # for inference
  97. def __init__(self, path, img_size=640, stride=32):
  98. p = str(Path(path).absolute()) # os-agnostic absolute path
  99. if '*' in p:
  100. files = sorted(glob.glob(p, recursive=True)) # glob
  101. elif os.path.isdir(p):
  102. files = sorted(glob.glob(os.path.join(p, '*.*'))) # dir
  103. elif os.path.isfile(p):
  104. files = [p] # files
  105. else:
  106. raise Exception(f'ERROR: {p} does not exist')
  107. images = [x for x in files if x.split('.')[-1].lower() in img_formats]
  108. videos = [x for x in files if x.split('.')[-1].lower() in vid_formats]
  109. ni, nv = len(images), len(videos)
  110. self.img_size = img_size
  111. self.stride = stride
  112. self.files = images + videos
  113. self.nf = ni + nv # number of files
  114. self.video_flag = [False] * ni + [True] * nv
  115. self.mode = 'image'
  116. if any(videos):
  117. self.new_video(videos[0]) # new video
  118. else:
  119. self.cap = None
  120. assert self.nf > 0, f'No images or videos found in {p}. ' \
  121. f'Supported formats are:\nimages: {img_formats}\nvideos: {vid_formats}'
  122. def __iter__(self):
  123. self.count = 0
  124. return self
  125. def __next__(self):
  126. if self.count == self.nf:
  127. raise StopIteration
  128. path = self.files[self.count]
  129. if self.video_flag[self.count]:
  130. # Read video
  131. self.mode = 'video'
  132. ret_val, img0 = self.cap.read()
  133. if not ret_val:
  134. self.count += 1
  135. self.cap.release()
  136. if self.count == self.nf: # last video
  137. raise StopIteration
  138. else:
  139. path = self.files[self.count]
  140. self.new_video(path)
  141. ret_val, img0 = self.cap.read()
  142. self.frame += 1
  143. print(f'video {self.count + 1}/{self.nf} ({self.frame}/{self.nframes}) {path}: ', end='')
  144. else:
  145. # Read image
  146. self.count += 1
  147. img0 = cv2.imread(path) # BGR
  148. assert img0 is not None, 'Image Not Found ' + path
  149. print(f'image {self.count}/{self.nf} {path}: ', end='')
  150. # Padded resize
  151. img = letterbox(img0, self.img_size, stride=self.stride)[0]
  152. # Convert
  153. img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
  154. img = np.ascontiguousarray(img)
  155. return path, img, img0, self.cap
  156. def new_video(self, path):
  157. self.frame = 0
  158. self.cap = cv2.VideoCapture(path)
  159. self.nframes = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
  160. def __len__(self):
  161. return self.nf # number of files
  162. class LoadWebcam: # for inference
  163. def __init__(self, pipe='0', img_size=640, stride=32):
  164. self.img_size = img_size
  165. self.stride = stride
  166. if pipe.isnumeric():
  167. pipe = eval(pipe) # local camera
  168. # pipe = 'rtsp://192.168.1.64/1' # IP camera
  169. # pipe = 'rtsp://username:password@192.168.1.64/1' # IP camera with login
  170. # pipe = 'http://wmccpinetop.axiscam.net/mjpg/video.mjpg' # IP golf camera
  171. self.pipe = pipe
  172. self.cap = cv2.VideoCapture(pipe) # video capture object
  173. self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3) # set buffer size
  174. def __iter__(self):
  175. self.count = -1
  176. return self
  177. def __next__(self):
  178. self.count += 1
  179. if cv2.waitKey(1) == ord('q'): # q to quit
  180. self.cap.release()
  181. cv2.destroyAllWindows()
  182. raise StopIteration
  183. # Read frame
  184. if self.pipe == 0: # local camera
  185. ret_val, img0 = self.cap.read()
  186. img0 = cv2.flip(img0, 1) # flip left-right
  187. else: # IP camera
  188. n = 0
  189. while True:
  190. n += 1
  191. self.cap.grab()
  192. if n % 30 == 0: # skip frames
  193. ret_val, img0 = self.cap.retrieve()
  194. if ret_val:
  195. break
  196. # Print
  197. assert ret_val, f'Camera Error {self.pipe}'
  198. img_path = 'webcam.jpg'
  199. print(f'webcam {self.count}: ', end='')
  200. # Padded resize
  201. img = letterbox(img0, self.img_size, stride=self.stride)[0]
  202. # Convert
  203. img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
  204. img = np.ascontiguousarray(img)
  205. return img_path, img, img0, None
  206. def __len__(self):
  207. return 0
  208. class LoadStreams: # multiple IP or RTSP cameras
  209. def __init__(self, sources='streams.txt', img_size=640, stride=32):
  210. self.mode = 'stream'
  211. self.img_size = img_size
  212. self.stride = stride
  213. if os.path.isfile(sources):
  214. with open(sources, 'r') as f:
  215. sources = [x.strip() for x in f.read().strip().splitlines() if len(x.strip())]
  216. else:
  217. sources = [sources]
  218. n = len(sources)
  219. self.imgs = [None] * n
  220. self.sources = [clean_str(x) for x in sources] # clean source names for later
  221. for i, s in enumerate(sources):
  222. # Start the thread to read frames from the video stream
  223. print(f'{i + 1}/{n}: {s}... ', end='')
  224. cap = cv2.VideoCapture(eval(s) if s.isnumeric() else s)
  225. assert cap.isOpened(), f'Failed to open {s}'
  226. w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
  227. h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
  228. fps = cap.get(cv2.CAP_PROP_FPS) % 100
  229. _, self.imgs[i] = cap.read() # guarantee first frame
  230. thread = Thread(target=self.update, args=([i, cap]), daemon=True)
  231. print(f' success ({w}x{h} at {fps:.2f} FPS).')
  232. thread.start()
  233. print('') # newline
  234. # check for common shapes
  235. s = np.stack([letterbox(x, self.img_size, stride=self.stride)[0].shape for x in self.imgs], 0) # shapes
  236. self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal
  237. if not self.rect:
  238. print('WARNING: Different stream shapes detected. For optimal performance supply similarly-shaped streams.')
  239. def update(self, index, cap):
  240. # Read next stream frame in a daemon thread
  241. n = 0
  242. while cap.isOpened():
  243. n += 1
  244. # _, self.imgs[index] = cap.read()
  245. cap.grab()
  246. if n == 4: # read every 4th frame
  247. success, im = cap.retrieve()
  248. self.imgs[index] = im if success else self.imgs[index] * 0
  249. n = 0
  250. time.sleep(0.01) # wait time
  251. def __iter__(self):
  252. self.count = -1
  253. return self
  254. def __next__(self):
  255. self.count += 1
  256. img0 = self.imgs.copy()
  257. if cv2.waitKey(1) == ord('q'): # q to quit
  258. cv2.destroyAllWindows()
  259. raise StopIteration
  260. # Letterbox
  261. img = [letterbox(x, self.img_size, auto=self.rect, stride=self.stride)[0] for x in img0]
  262. # Stack
  263. img = np.stack(img, 0)
  264. # Convert
  265. img = img[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB, to bsx3x416x416
  266. img = np.ascontiguousarray(img)
  267. return self.sources, img, img0, None
  268. def __len__(self):
  269. return 0 # 1E12 frames = 32 streams at 30 FPS for 30 years
  270. def img2label_paths(img_paths):
  271. # Define label paths as a function of image paths
  272. sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep # /images/, /labels/ substrings
  273. return ['txt'.join(x.replace(sa, sb, 1).rsplit(x.split('.')[-1], 1)) for x in img_paths]
  274. class LoadImagesAndLabels(Dataset): # for training/testing
  275. def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
  276. cache_images=False, single_cls=False, stride=32, pad=0.0, prefix=''):
  277. self.img_size = img_size
  278. self.augment = augment
  279. self.hyp = hyp
  280. self.image_weights = image_weights
  281. self.rect = False if image_weights else rect
  282. self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)
  283. self.mosaic_border = [-img_size // 2, -img_size // 2]
  284. self.stride = stride
  285. self.path = path
  286. try:
  287. f = [] # image files
  288. for p in path if isinstance(path, list) else [path]:
  289. p = Path(p) # os-agnostic
  290. if p.is_dir(): # dir
  291. f += glob.glob(str(p / '**' / '*.*'), recursive=True)
  292. # f = list(p.rglob('**/*.*')) # pathlib
  293. elif p.is_file(): # file
  294. with open(p, 'r') as t:
  295. t = t.read().strip().splitlines()
  296. parent = str(p.parent) + os.sep
  297. f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path
  298. # f += [p.parent / x.lstrip(os.sep) for x in t] # local to global path (pathlib)
  299. else:
  300. raise Exception(f'{prefix}{p} does not exist')
  301. self.img_files = sorted([x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in img_formats])
  302. # self.img_files = sorted([x for x in f if x.suffix[1:].lower() in img_formats]) # pathlib
  303. assert self.img_files, f'{prefix}No images found'
  304. except Exception as e:
  305. raise Exception(f'{prefix}Error loading data from {path}: {e}\nSee {help_url}')
  306. # Check cache
  307. self.label_files = img2label_paths(self.img_files) # labels
  308. cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix('.cache') # cached labels
  309. if cache_path.is_file():
  310. cache, exists = torch.load(cache_path), True # load
  311. if cache['hash'] != get_hash(self.label_files + self.img_files) or 'version' not in cache: # changed
  312. cache, exists = self.cache_labels(cache_path, prefix), False # re-cache
  313. else:
  314. cache, exists = self.cache_labels(cache_path, prefix), False # cache
  315. # Display cache
  316. nf, nm, ne, nc, n = cache.pop('results') # found, missing, empty, corrupted, total
  317. if exists:
  318. d = f"Scanning '{cache_path}' for images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupted"
  319. tqdm(None, desc=prefix + d, total=n, initial=n) # display cache results
  320. assert nf > 0 or not augment, f'{prefix}No labels in {cache_path}. Can not train without labels. See {help_url}'
  321. # Read cache
  322. cache.pop('hash') # remove hash
  323. cache.pop('version') # remove version
  324. labels, shapes, self.segments = zip(*cache.values())
  325. self.labels = list(labels)
  326. self.shapes = np.array(shapes, dtype=np.float64)
  327. self.img_files = list(cache.keys()) # update
  328. self.label_files = img2label_paths(cache.keys()) # update
  329. if single_cls:
  330. for x in self.labels:
  331. x[:, 0] = 0
  332. n = len(shapes) # number of images
  333. bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index
  334. nb = bi[-1] + 1 # number of batches
  335. self.batch = bi # batch index of image
  336. self.n = n
  337. self.indices = range(n)
  338. # Rectangular Training
  339. if self.rect:
  340. # Sort by aspect ratio
  341. s = self.shapes # wh
  342. ar = s[:, 1] / s[:, 0] # aspect ratio
  343. irect = ar.argsort()
  344. self.img_files = [self.img_files[i] for i in irect]
  345. self.label_files = [self.label_files[i] for i in irect]
  346. self.labels = [self.labels[i] for i in irect]
  347. self.shapes = s[irect] # wh
  348. ar = ar[irect]
  349. # Set training image shapes
  350. shapes = [[1, 1]] * nb
  351. for i in range(nb):
  352. ari = ar[bi == i]
  353. mini, maxi = ari.min(), ari.max()
  354. if maxi < 1:
  355. shapes[i] = [maxi, 1]
  356. elif mini > 1:
  357. shapes[i] = [1, 1 / mini]
  358. self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride
  359. # Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
  360. self.imgs = [None] * n
  361. if cache_images:
  362. gb = 0 # Gigabytes of cached images
  363. self.img_hw0, self.img_hw = [None] * n, [None] * n
  364. results = ThreadPool(8).imap(lambda x: load_image(*x), zip(repeat(self), range(n))) # 8 threads
  365. pbar = tqdm(enumerate(results), total=n)
  366. for i, x in pbar:
  367. self.imgs[i], self.img_hw0[i], self.img_hw[i] = x # img, hw_original, hw_resized = load_image(self, i)
  368. gb += self.imgs[i].nbytes
  369. pbar.desc = f'{prefix}Caching images ({gb / 1E9:.1f}GB)'
  370. def cache_labels(self, path=Path('./labels.cache'), prefix=''):
  371. # Cache dataset labels, check images and read shapes
  372. x = {} # dict
  373. nm, nf, ne, nc = 0, 0, 0, 0 # number missing, found, empty, duplicate
  374. pbar = tqdm(zip(self.img_files, self.label_files), desc='Scanning images', total=len(self.img_files))
  375. for i, (im_file, lb_file) in enumerate(pbar):
  376. try:
  377. # verify images
  378. im = Image.open(im_file)
  379. im.verify() # PIL verify
  380. shape = exif_size(im) # image size
  381. segments = [] # instance segments
  382. assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels'
  383. assert im.format.lower() in img_formats, f'invalid image format {im.format}'
  384. # verify labels
  385. if os.path.isfile(lb_file):
  386. nf += 1 # label found
  387. with open(lb_file, 'r') as f:
  388. l = [x.split() for x in f.read().strip().splitlines()]
  389. if any([len(x) > 8 for x in l]): # is segment
  390. classes = np.array([x[0] for x in l], dtype=np.float32)
  391. segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in l] # (cls, xy1...)
  392. l = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh)
  393. l = np.array(l, dtype=np.float32)
  394. if len(l):
  395. assert l.shape[1] == 5, 'labels require 5 columns each'
  396. assert (l >= 0).all(), 'negative labels'
  397. assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels'
  398. assert np.unique(l, axis=0).shape[0] == l.shape[0], 'duplicate labels'
  399. else:
  400. ne += 1 # label empty
  401. l = np.zeros((0, 5), dtype=np.float32)
  402. else:
  403. nm += 1 # label missing
  404. l = np.zeros((0, 5), dtype=np.float32)
  405. x[im_file] = [l, shape, segments]
  406. except Exception as e:
  407. nc += 1
  408. print(f'{prefix}WARNING: Ignoring corrupted image and/or label {im_file}: {e}')
  409. pbar.desc = f"{prefix}Scanning '{path.parent / path.stem}' for images and labels... " \
  410. f"{nf} found, {nm} missing, {ne} empty, {nc} corrupted"
  411. if nf == 0:
  412. print(f'{prefix}WARNING: No labels found in {path}. See {help_url}')
  413. x['hash'] = get_hash(self.label_files + self.img_files)
  414. x['results'] = nf, nm, ne, nc, i + 1
  415. x['version'] = 0.1 # cache version
  416. torch.save(x, path) # save for next time
  417. logging.info(f'{prefix}New cache created: {path}')
  418. return x
  419. def __len__(self):
  420. return len(self.img_files)
  421. # def __iter__(self):
  422. # self.count = -1
  423. # print('ran dataset iter')
  424. # #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
  425. # return self
  426. def __getitem__(self, index):
  427. index = self.indices[index] # linear, shuffled, or image_weights
  428. hyp = self.hyp
  429. mosaic = self.mosaic and random.random() < hyp['mosaic']
  430. if mosaic:
  431. # Load mosaic
  432. img, labels = load_mosaic(self, index)
  433. shapes = None
  434. # MixUp https://arxiv.org/pdf/1710.09412.pdf
  435. if random.random() < hyp['mixup']:
  436. img2, labels2 = load_mosaic(self, random.randint(0, self.n - 1))
  437. r = np.random.beta(8.0, 8.0) # mixup ratio, alpha=beta=8.0
  438. img = (img * r + img2 * (1 - r)).astype(np.uint8)
  439. labels = np.concatenate((labels, labels2), 0)
  440. else:
  441. # Load image
  442. img, (h0, w0), (h, w) = load_image(self, index)
  443. # Letterbox
  444. shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
  445. img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
  446. shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
  447. labels = self.labels[index].copy()
  448. if labels.size: # normalized xywh to pixel xyxy format
  449. labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])
  450. if self.augment:
  451. # Augment imagespace
  452. if not mosaic:
  453. img, labels = random_perspective(img, labels,
  454. degrees=hyp['degrees'],
  455. translate=hyp['translate'],
  456. scale=hyp['scale'],
  457. shear=hyp['shear'],
  458. perspective=hyp['perspective'])
  459. # Augment colorspace
  460. augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
  461. # Apply cutouts
  462. # if random.random() < 0.9:
  463. # labels = cutout(img, labels)
  464. nL = len(labels) # number of labels
  465. if nL:
  466. labels[:, 1:5] = xyxy2xywh(labels[:, 1:5]) # convert xyxy to xywh
  467. labels[:, [2, 4]] /= img.shape[0] # normalized height 0-1
  468. labels[:, [1, 3]] /= img.shape[1] # normalized width 0-1
  469. if self.augment:
  470. # flip up-down
  471. if random.random() < hyp['flipud']:
  472. img = np.flipud(img)
  473. if nL:
  474. labels[:, 2] = 1 - labels[:, 2]
  475. # flip left-right
  476. if random.random() < hyp['fliplr']:
  477. img = np.fliplr(img)
  478. if nL:
  479. labels[:, 1] = 1 - labels[:, 1]
  480. labels_out = torch.zeros((nL, 6))
  481. if nL:
  482. labels_out[:, 1:] = torch.from_numpy(labels)
  483. # Convert
  484. img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
  485. img = np.ascontiguousarray(img)
  486. return torch.from_numpy(img), labels_out, self.img_files[index], shapes
  487. @staticmethod
  488. def collate_fn(batch):
  489. img, label, path, shapes = zip(*batch) # transposed
  490. for i, l in enumerate(label):
  491. l[:, 0] = i # add target image index for build_targets()
  492. return torch.stack(img, 0), torch.cat(label, 0), path, shapes
  493. @staticmethod
  494. def collate_fn4(batch):
  495. img, label, path, shapes = zip(*batch) # transposed
  496. n = len(shapes) // 4
  497. img4, label4, path4, shapes4 = [], [], path[:n], shapes[:n]
  498. ho = torch.tensor([[0., 0, 0, 1, 0, 0]])
  499. wo = torch.tensor([[0., 0, 1, 0, 0, 0]])
  500. s = torch.tensor([[1, 1, .5, .5, .5, .5]]) # scale
  501. for i in range(n): # zidane torch.zeros(16,3,720,1280) # BCHW
  502. i *= 4
  503. if random.random() < 0.5:
  504. im = F.interpolate(img[i].unsqueeze(0).float(), scale_factor=2., mode='bilinear', align_corners=False)[
  505. 0].type(img[i].type())
  506. l = label[i]
  507. else:
  508. im = torch.cat((torch.cat((img[i], img[i + 1]), 1), torch.cat((img[i + 2], img[i + 3]), 1)), 2)
  509. l = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s
  510. img4.append(im)
  511. label4.append(l)
  512. for i, l in enumerate(label4):
  513. l[:, 0] = i # add target image index for build_targets()
  514. return torch.stack(img4, 0), torch.cat(label4, 0), path4, shapes4
  515. # Ancillary functions --------------------------------------------------------------------------------------------------
  516. def load_image(self, index):
  517. # loads 1 image from dataset, returns img, original hw, resized hw
  518. img = self.imgs[index]
  519. if img is None: # not cached
  520. path = self.img_files[index]
  521. img = cv2.imread(path) # BGR
  522. assert img is not None, 'Image Not Found ' + path
  523. h0, w0 = img.shape[:2] # orig hw
  524. r = self.img_size / max(h0, w0) # resize image to img_size
  525. if r != 1: # always resize down, only resize up if training with augmentation
  526. interp = cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR
  527. img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interp)
  528. return img, (h0, w0), img.shape[:2] # img, hw_original, hw_resized
  529. else:
  530. return self.imgs[index], self.img_hw0[index], self.img_hw[index] # img, hw_original, hw_resized
  531. def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5):
  532. r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
  533. hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
  534. dtype = img.dtype # uint8
  535. x = np.arange(0, 256, dtype=np.int16)
  536. lut_hue = ((x * r[0]) % 180).astype(dtype)
  537. lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
  538. lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
  539. img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype)
  540. cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
  541. def hist_equalize(img, clahe=True, bgr=False):
  542. # Equalize histogram on BGR image 'img' with img.shape(n,m,3) and range 0-255
  543. yuv = cv2.cvtColor(img, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV)
  544. if clahe:
  545. c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
  546. yuv[:, :, 0] = c.apply(yuv[:, :, 0])
  547. else:
  548. yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0]) # equalize Y channel histogram
  549. return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB) # convert YUV image to RGB
  550. def load_mosaic(self, index):
  551. # loads images in a 4-mosaic
  552. labels4, segments4 = [], []
  553. s = self.img_size
  554. yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] # mosaic center x, y
  555. indices = [index] + random.choices(self.indices, k=3) # 3 additional image indices
  556. for i, index in enumerate(indices):
  557. # Load image
  558. img, _, (h, w) = load_image(self, index)
  559. # place img in img4
  560. if i == 0: # top left
  561. img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
  562. x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
  563. x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
  564. elif i == 1: # top right
  565. x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
  566. x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
  567. elif i == 2: # bottom left
  568. x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
  569. x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
  570. elif i == 3: # bottom right
  571. x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
  572. x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
  573. img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
  574. padw = x1a - x1b
  575. padh = y1a - y1b
  576. # Labels
  577. labels, segments = self.labels[index].copy(), self.segments[index].copy()
  578. if labels.size:
  579. labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format
  580. segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
  581. labels4.append(labels)
  582. segments4.extend(segments)
  583. # Concat/clip labels
  584. labels4 = np.concatenate(labels4, 0)
  585. for x in (labels4[:, 1:], *segments4):
  586. np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
  587. # img4, labels4 = replicate(img4, labels4) # replicate
  588. # Augment
  589. img4, labels4 = random_perspective(img4, labels4, segments4,
  590. degrees=self.hyp['degrees'],
  591. translate=self.hyp['translate'],
  592. scale=self.hyp['scale'],
  593. shear=self.hyp['shear'],
  594. perspective=self.hyp['perspective'],
  595. border=self.mosaic_border) # border to remove
  596. return img4, labels4
  597. def load_mosaic9(self, index):
  598. # loads images in a 9-mosaic
  599. labels9, segments9 = [], []
  600. s = self.img_size
  601. indices = [index] + random.choices(self.indices, k=8) # 8 additional image indices
  602. for i, index in enumerate(indices):
  603. # Load image
  604. img, _, (h, w) = load_image(self, index)
  605. # place img in img9
  606. if i == 0: # center
  607. img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
  608. h0, w0 = h, w
  609. c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates
  610. elif i == 1: # top
  611. c = s, s - h, s + w, s
  612. elif i == 2: # top right
  613. c = s + wp, s - h, s + wp + w, s
  614. elif i == 3: # right
  615. c = s + w0, s, s + w0 + w, s + h
  616. elif i == 4: # bottom right
  617. c = s + w0, s + hp, s + w0 + w, s + hp + h
  618. elif i == 5: # bottom
  619. c = s + w0 - w, s + h0, s + w0, s + h0 + h
  620. elif i == 6: # bottom left
  621. c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h
  622. elif i == 7: # left
  623. c = s - w, s + h0 - h, s, s + h0
  624. elif i == 8: # top left
  625. c = s - w, s + h0 - hp - h, s, s + h0 - hp
  626. padx, pady = c[:2]
  627. x1, y1, x2, y2 = [max(x, 0) for x in c] # allocate coords
  628. # Labels
  629. labels, segments = self.labels[index].copy(), self.segments[index].copy()
  630. if labels.size:
  631. labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady) # normalized xywh to pixel xyxy format
  632. segments = [xyn2xy(x, w, h, padx, pady) for x in segments]
  633. labels9.append(labels)
  634. segments9.extend(segments)
  635. # Image
  636. img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:] # img9[ymin:ymax, xmin:xmax]
  637. hp, wp = h, w # height, width previous
  638. # Offset
  639. yc, xc = [int(random.uniform(0, s)) for _ in self.mosaic_border] # mosaic center x, y
  640. img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s]
  641. # Concat/clip labels
  642. labels9 = np.concatenate(labels9, 0)
  643. labels9[:, [1, 3]] -= xc
  644. labels9[:, [2, 4]] -= yc
  645. c = np.array([xc, yc]) # centers
  646. segments9 = [x - c for x in segments9]
  647. for x in (labels9[:, 1:], *segments9):
  648. np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
  649. # img9, labels9 = replicate(img9, labels9) # replicate
  650. # Augment
  651. img9, labels9 = random_perspective(img9, labels9, segments9,
  652. degrees=self.hyp['degrees'],
  653. translate=self.hyp['translate'],
  654. scale=self.hyp['scale'],
  655. shear=self.hyp['shear'],
  656. perspective=self.hyp['perspective'],
  657. border=self.mosaic_border) # border to remove
  658. return img9, labels9
  659. def replicate(img, labels):
  660. # Replicate labels
  661. h, w = img.shape[:2]
  662. boxes = labels[:, 1:].astype(int)
  663. x1, y1, x2, y2 = boxes.T
  664. s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels)
  665. for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices
  666. x1b, y1b, x2b, y2b = boxes[i]
  667. bh, bw = y2b - y1b, x2b - x1b
  668. yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y
  669. x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
  670. img[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
  671. labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
  672. return img, labels
  673. def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
  674. # Resize and pad image while meeting stride-multiple constraints
  675. shape = img.shape[:2] # current shape [height, width]
  676. if isinstance(new_shape, int):
  677. new_shape = (new_shape, new_shape)
  678. # Scale ratio (new / old)
  679. r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
  680. if not scaleup: # only scale down, do not scale up (for better test mAP)
  681. r = min(r, 1.0)
  682. # Compute padding
  683. ratio = r, r # width, height ratios
  684. new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
  685. dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
  686. if auto: # minimum rectangle
  687. dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
  688. elif scaleFill: # stretch
  689. dw, dh = 0.0, 0.0
  690. new_unpad = (new_shape[1], new_shape[0])
  691. ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
  692. dw /= 2 # divide padding into 2 sides
  693. dh /= 2
  694. if shape[::-1] != new_unpad: # resize
  695. img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
  696. top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
  697. left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
  698. img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
  699. return img, ratio, (dw, dh)
  700. def random_perspective(img, targets=(), segments=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0,
  701. border=(0, 0)):
  702. # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
  703. # targets = [cls, xyxy]
  704. height = img.shape[0] + border[0] * 2 # shape(h,w,c)
  705. width = img.shape[1] + border[1] * 2
  706. # Center
  707. C = np.eye(3)
  708. C[0, 2] = -img.shape[1] / 2 # x translation (pixels)
  709. C[1, 2] = -img.shape[0] / 2 # y translation (pixels)
  710. # Perspective
  711. P = np.eye(3)
  712. P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
  713. P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
  714. # Rotation and Scale
  715. R = np.eye(3)
  716. a = random.uniform(-degrees, degrees)
  717. # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
  718. s = random.uniform(1 - scale, 1 + scale)
  719. # s = 2 ** random.uniform(-scale, scale)
  720. R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
  721. # Shear
  722. S = np.eye(3)
  723. S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
  724. S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
  725. # Translation
  726. T = np.eye(3)
  727. T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
  728. T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
  729. # Combined rotation matrix
  730. M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
  731. if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
  732. if perspective:
  733. img = cv2.warpPerspective(img, M, dsize=(width, height), borderValue=(114, 114, 114))
  734. else: # affine
  735. img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
  736. # Visualize
  737. # import matplotlib.pyplot as plt
  738. # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
  739. # ax[0].imshow(img[:, :, ::-1]) # base
  740. # ax[1].imshow(img2[:, :, ::-1]) # warped
  741. # Transform label coordinates
  742. n = len(targets)
  743. if n:
  744. use_segments = any(x.any() for x in segments)
  745. new = np.zeros((n, 4))
  746. if use_segments: # warp segments
  747. segments = resample_segments(segments) # upsample
  748. for i, segment in enumerate(segments):
  749. xy = np.ones((len(segment), 3))
  750. xy[:, :2] = segment
  751. xy = xy @ M.T # transform
  752. xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2] # perspective rescale or affine
  753. # clip
  754. new[i] = segment2box(xy, width, height)
  755. else: # warp boxes
  756. xy = np.ones((n * 4, 3))
  757. xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
  758. xy = xy @ M.T # transform
  759. xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine
  760. # create new boxes
  761. x = xy[:, [0, 2, 4, 6]]
  762. y = xy[:, [1, 3, 5, 7]]
  763. new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
  764. # clip
  765. new[:, [0, 2]] = new[:, [0, 2]].clip(0, width)
  766. new[:, [1, 3]] = new[:, [1, 3]].clip(0, height)
  767. # filter candidates
  768. i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10)
  769. targets = targets[i]
  770. targets[:, 1:5] = new[i]
  771. return img, targets
  772. def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n)
  773. # Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
  774. w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
  775. w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
  776. ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio
  777. return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates
  778. def cutout(image, labels):
  779. # Applies image cutout augmentation https://arxiv.org/abs/1708.04552
  780. h, w = image.shape[:2]
  781. def bbox_ioa(box1, box2):
  782. # Returns the intersection over box2 area given box1, box2. box1 is 4, box2 is nx4. boxes are x1y1x2y2
  783. box2 = box2.transpose()
  784. # Get the coordinates of bounding boxes
  785. b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
  786. b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
  787. # Intersection area
  788. inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
  789. (np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)
  790. # box2 area
  791. box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + 1e-16
  792. # Intersection over box2 area
  793. return inter_area / box2_area
  794. # create random masks
  795. scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
  796. for s in scales:
  797. mask_h = random.randint(1, int(h * s))
  798. mask_w = random.randint(1, int(w * s))
  799. # box
  800. xmin = max(0, random.randint(0, w) - mask_w // 2)
  801. ymin = max(0, random.randint(0, h) - mask_h // 2)
  802. xmax = min(w, xmin + mask_w)
  803. ymax = min(h, ymin + mask_h)
  804. # apply random color mask
  805. image[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
  806. # return unobscured labels
  807. if len(labels) and s > 0.03:
  808. box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
  809. ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
  810. labels = labels[ioa < 0.60] # remove >60% obscured labels
  811. return labels
  812. def create_folder(path='./new'):
  813. # Create folder
  814. if os.path.exists(path):
  815. shutil.rmtree(path) # delete output folder
  816. os.makedirs(path) # make new output folder
  817. def flatten_recursive(path='../coco128'):
  818. # Flatten a recursive directory by bringing all files to top level
  819. new_path = Path(path + '_flat')
  820. create_folder(new_path)
  821. for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)):
  822. shutil.copyfile(file, new_path / Path(file).name)
  823. def extract_boxes(path='../coco128/'): # from utils.datasets import *; extract_boxes('../coco128')
  824. # Convert detection dataset into classification dataset, with one directory per class
  825. path = Path(path) # images dir
  826. shutil.rmtree(path / 'classifier') if (path / 'classifier').is_dir() else None # remove existing
  827. files = list(path.rglob('*.*'))
  828. n = len(files) # number of files
  829. for im_file in tqdm(files, total=n):
  830. if im_file.suffix[1:] in img_formats:
  831. # image
  832. im = cv2.imread(str(im_file))[..., ::-1] # BGR to RGB
  833. h, w = im.shape[:2]
  834. # labels
  835. lb_file = Path(img2label_paths([str(im_file)])[0])
  836. if Path(lb_file).exists():
  837. with open(lb_file, 'r') as f:
  838. lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels
  839. for j, x in enumerate(lb):
  840. c = int(x[0]) # class
  841. f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg' # new filename
  842. if not f.parent.is_dir():
  843. f.parent.mkdir(parents=True)
  844. b = x[1:] * [w, h, w, h] # box
  845. # b[2:] = b[2:].max() # rectangle to square
  846. b[2:] = b[2:] * 1.2 + 3 # pad
  847. b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int)
  848. b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image
  849. b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
  850. assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}'
  851. def autosplit(path='../coco128', weights=(0.9, 0.1, 0.0)): # from utils.datasets import *; autosplit('../coco128')
  852. """ Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
  853. # Arguments
  854. path: Path to images directory
  855. weights: Train, val, test weights (list)
  856. """
  857. path = Path(path) # images dir
  858. files = list(path.rglob('*.*'))
  859. n = len(files) # number of files
  860. indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split
  861. txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files
  862. [(path / x).unlink() for x in txt if (path / x).exists()] # remove existing
  863. for i, img in tqdm(zip(indices, files), total=n):
  864. if img.suffix[1:] in img_formats:
  865. with open(path / txt[i], 'a') as f:
  866. f.write(str(img) + '\n') # add image to txt file
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...