1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
|
- """YOLOv5 PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5/
- Usage:
- import torch
- model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
- """
- import torch
- def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
- """Creates a specified YOLOv5 model
- Arguments:
- name (str): name of model, i.e. 'yolov5s'
- pretrained (bool): load pretrained weights into the model
- channels (int): number of input channels
- classes (int): number of model classes
- autoshape (bool): apply YOLOv5 .autoshape() wrapper to model
- verbose (bool): print all information to screen
- device (str, torch.device, None): device to use for model parameters
- Returns:
- YOLOv5 pytorch model
- """
- from pathlib import Path
- from models.yolo import Model, attempt_load
- from utils.general import check_requirements, set_logging
- from utils.google_utils import attempt_download
- from utils.torch_utils import select_device
- check_requirements(requirements=Path(__file__).parent / 'requirements.txt',
- exclude=('tensorboard', 'thop', 'opencv-python'))
- set_logging(verbose=verbose)
- fname = Path(name).with_suffix('.pt') # checkpoint filename
- try:
- if pretrained and channels == 3 and classes == 80:
- model = attempt_load(fname, map_location=torch.device('cpu')) # download/load FP32 model
- else:
- cfg = list((Path(__file__).parent / 'models').rglob(f'{name}.yaml'))[0] # model.yaml path
- model = Model(cfg, channels, classes) # create model
- if pretrained:
- ckpt = torch.load(attempt_download(fname), map_location=torch.device('cpu')) # load
- msd = model.state_dict() # model state_dict
- csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
- csd = {k: v for k, v in csd.items() if msd[k].shape == v.shape} # filter
- model.load_state_dict(csd, strict=False) # load
- if len(ckpt['model'].names) == classes:
- model.names = ckpt['model'].names # set class names attribute
- if autoshape:
- model = model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
- device = select_device('0' if torch.cuda.is_available() else 'cpu') if device is None else torch.device(device)
- return model.to(device)
- except Exception as e:
- help_url = 'https://github.com/ultralytics/yolov5/issues/36'
- s = 'Cache may be out of date, try `force_reload=True`. See %s for help.' % help_url
- raise Exception(s) from e
- def custom(path='path/to/model.pt', autoshape=True, verbose=True, device=None):
- # YOLOv5 custom or local model
- return _create(path, autoshape=autoshape, verbose=verbose, device=device)
- def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
- # YOLOv5-small model https://github.com/ultralytics/yolov5
- return _create('yolov5s', pretrained, channels, classes, autoshape, verbose, device)
- def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
- # YOLOv5-medium model https://github.com/ultralytics/yolov5
- return _create('yolov5m', pretrained, channels, classes, autoshape, verbose, device)
- def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
- # YOLOv5-large model https://github.com/ultralytics/yolov5
- return _create('yolov5l', pretrained, channels, classes, autoshape, verbose, device)
- def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
- # YOLOv5-xlarge model https://github.com/ultralytics/yolov5
- return _create('yolov5x', pretrained, channels, classes, autoshape, verbose, device)
- def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
- # YOLOv5-small-P6 model https://github.com/ultralytics/yolov5
- return _create('yolov5s6', pretrained, channels, classes, autoshape, verbose, device)
- def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
- # YOLOv5-medium-P6 model https://github.com/ultralytics/yolov5
- return _create('yolov5m6', pretrained, channels, classes, autoshape, verbose, device)
- def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
- # YOLOv5-large-P6 model https://github.com/ultralytics/yolov5
- return _create('yolov5l6', pretrained, channels, classes, autoshape, verbose, device)
- def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
- # YOLOv5-xlarge-P6 model https://github.com/ultralytics/yolov5
- return _create('yolov5x6', pretrained, channels, classes, autoshape, verbose, device)
- if __name__ == '__main__':
- model = _create(name='yolov5s', pretrained=True, channels=3, classes=80, autoshape=True, verbose=True) # pretrained
- # model = custom(path='path/to/model.pt') # custom
- # Verify inference
- import cv2
- import numpy as np
- from PIL import Image
- imgs = ['data/images/zidane.jpg', # filename
- 'https://github.com/ultralytics/yolov5/releases/download/v1.0/zidane.jpg', # URI
- cv2.imread('data/images/bus.jpg')[:, :, ::-1], # OpenCV
- Image.open('data/images/bus.jpg'), # PIL
- np.zeros((320, 640, 3))] # numpy
- results = model(imgs) # batched inference
- results.print()
- results.save()
|