Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

train.py 33 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
  1. """Train a YOLOv5 model on a custom dataset
  2. Usage:
  3. $ python path/to/train.py --data coco128.yaml --weights yolov5s.pt --img 640
  4. """
  5. import argparse
  6. import logging
  7. import math
  8. import os
  9. import random
  10. import sys
  11. import time
  12. import warnings
  13. from copy import deepcopy
  14. from pathlib import Path
  15. from threading import Thread
  16. import numpy as np
  17. import torch.distributed as dist
  18. import torch.nn as nn
  19. import torch.nn.functional as F
  20. import torch.optim as optim
  21. import torch.optim.lr_scheduler as lr_scheduler
  22. import torch.utils.data
  23. import yaml
  24. from torch.cuda import amp
  25. from torch.nn.parallel import DistributedDataParallel as DDP
  26. from torch.utils.tensorboard import SummaryWriter
  27. from tqdm import tqdm
  28. FILE = Path(__file__).absolute()
  29. sys.path.append(FILE.parents[0].as_posix()) # add yolov5/ to path
  30. import test # for end-of-epoch mAP
  31. from models.experimental import attempt_load
  32. from models.yolo import Model
  33. from utils.autoanchor import check_anchors
  34. from utils.datasets import create_dataloader
  35. from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \
  36. strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, \
  37. check_requirements, print_mutation, set_logging, one_cycle, colorstr
  38. from utils.google_utils import attempt_download
  39. from utils.loss import ComputeLoss
  40. from utils.plots import plot_images, plot_labels, plot_results, plot_evolution
  41. from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first, de_parallel
  42. from utils.wandb_logging.wandb_utils import WandbLogger, check_wandb_resume
  43. from utils.metrics import fitness
  44. logger = logging.getLogger(__name__)
  45. LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
  46. RANK = int(os.getenv('RANK', -1))
  47. WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
  48. def train(hyp, # path/to/hyp.yaml or hyp dictionary
  49. opt,
  50. device,
  51. ):
  52. save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, notest, nosave, workers, = \
  53. opt.save_dir, opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
  54. opt.resume, opt.notest, opt.nosave, opt.workers
  55. # Directories
  56. save_dir = Path(save_dir)
  57. wdir = save_dir / 'weights'
  58. wdir.mkdir(parents=True, exist_ok=True) # make dir
  59. last = wdir / 'last.pt'
  60. best = wdir / 'best.pt'
  61. results_file = save_dir / 'results.txt'
  62. # Hyperparameters
  63. if isinstance(hyp, str):
  64. with open(hyp) as f:
  65. hyp = yaml.safe_load(f) # load hyps dict
  66. logger.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
  67. # Save run settings
  68. with open(save_dir / 'hyp.yaml', 'w') as f:
  69. yaml.safe_dump(hyp, f, sort_keys=False)
  70. with open(save_dir / 'opt.yaml', 'w') as f:
  71. yaml.safe_dump(vars(opt), f, sort_keys=False)
  72. # Configure
  73. plots = not evolve # create plots
  74. cuda = device.type != 'cpu'
  75. init_seeds(1 + RANK)
  76. with open(data) as f:
  77. data_dict = yaml.safe_load(f) # data dict
  78. # Loggers
  79. loggers = {'wandb': None, 'tb': None} # loggers dict
  80. if RANK in [-1, 0]:
  81. # TensorBoard
  82. if not evolve:
  83. prefix = colorstr('tensorboard: ')
  84. logger.info(f"{prefix}Start with 'tensorboard --logdir {opt.project}', view at http://localhost:6006/")
  85. loggers['tb'] = SummaryWriter(str(save_dir))
  86. # W&B
  87. opt.hyp = hyp # add hyperparameters
  88. run_id = torch.load(weights).get('wandb_id') if weights.endswith('.pt') and os.path.isfile(weights) else None
  89. run_id = run_id if opt.resume else None # start fresh run if transfer learning
  90. wandb_logger = WandbLogger(opt, save_dir.stem, run_id, data_dict)
  91. loggers['wandb'] = wandb_logger.wandb
  92. if loggers['wandb']:
  93. data_dict = wandb_logger.data_dict
  94. weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp # may update weights, epochs if resuming
  95. nc = 1 if single_cls else int(data_dict['nc']) # number of classes
  96. names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
  97. assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, data) # check
  98. is_coco = data.endswith('coco.yaml') and nc == 80 # COCO dataset
  99. # Model
  100. pretrained = weights.endswith('.pt')
  101. if pretrained:
  102. with torch_distributed_zero_first(RANK):
  103. weights = attempt_download(weights) # download if not found locally
  104. ckpt = torch.load(weights, map_location=device) # load checkpoint
  105. model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
  106. exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys
  107. state_dict = ckpt['model'].float().state_dict() # to FP32
  108. state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect
  109. model.load_state_dict(state_dict, strict=False) # load
  110. logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report
  111. else:
  112. model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
  113. with torch_distributed_zero_first(RANK):
  114. check_dataset(data_dict) # check
  115. train_path = data_dict['train']
  116. test_path = data_dict['val']
  117. # Freeze
  118. freeze = [] # parameter names to freeze (full or partial)
  119. for k, v in model.named_parameters():
  120. v.requires_grad = True # train all layers
  121. if any(x in k for x in freeze):
  122. print('freezing %s' % k)
  123. v.requires_grad = False
  124. # Optimizer
  125. nbs = 64 # nominal batch size
  126. accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing
  127. hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay
  128. logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")
  129. pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
  130. for k, v in model.named_modules():
  131. if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
  132. pg2.append(v.bias) # biases
  133. if isinstance(v, nn.BatchNorm2d):
  134. pg0.append(v.weight) # no decay
  135. elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
  136. pg1.append(v.weight) # apply decay
  137. if opt.adam:
  138. optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
  139. else:
  140. optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
  141. optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
  142. optimizer.add_param_group({'params': pg2}) # add pg2 (biases)
  143. logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
  144. del pg0, pg1, pg2
  145. # Scheduler https://arxiv.org/pdf/1812.01187.pdf
  146. # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
  147. if opt.linear_lr:
  148. lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
  149. else:
  150. lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
  151. scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
  152. # plot_lr_scheduler(optimizer, scheduler, epochs)
  153. # EMA
  154. ema = ModelEMA(model) if RANK in [-1, 0] else None
  155. # Resume
  156. start_epoch, best_fitness = 0, 0.0
  157. if pretrained:
  158. # Optimizer
  159. if ckpt['optimizer'] is not None:
  160. optimizer.load_state_dict(ckpt['optimizer'])
  161. best_fitness = ckpt['best_fitness']
  162. # EMA
  163. if ema and ckpt.get('ema'):
  164. ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
  165. ema.updates = ckpt['updates']
  166. # Results
  167. if ckpt.get('training_results') is not None:
  168. results_file.write_text(ckpt['training_results']) # write results.txt
  169. # Epochs
  170. start_epoch = ckpt['epoch'] + 1
  171. if resume:
  172. assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
  173. if epochs < start_epoch:
  174. logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
  175. (weights, ckpt['epoch'], epochs))
  176. epochs += ckpt['epoch'] # finetune additional epochs
  177. del ckpt, state_dict
  178. # Image sizes
  179. gs = max(int(model.stride.max()), 32) # grid size (max stride)
  180. nl = model.model[-1].nl # number of detection layers (used for scaling hyp['obj'])
  181. imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples
  182. # DP mode
  183. if cuda and RANK == -1 and torch.cuda.device_count() > 1:
  184. logging.warning('DP not recommended, instead use torch.distributed.run for best DDP Multi-GPU results.\n'
  185. 'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.')
  186. model = torch.nn.DataParallel(model)
  187. # SyncBatchNorm
  188. if opt.sync_bn and cuda and RANK != -1:
  189. model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
  190. logger.info('Using SyncBatchNorm()')
  191. # Trainloader
  192. dataloader, dataset = create_dataloader(train_path, imgsz, batch_size // WORLD_SIZE, gs, single_cls,
  193. hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=RANK,
  194. workers=workers,
  195. image_weights=opt.image_weights, quad=opt.quad, prefix=colorstr('train: '))
  196. mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class
  197. nb = len(dataloader) # number of batches
  198. assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, data, nc - 1)
  199. # Process 0
  200. if RANK in [-1, 0]:
  201. testloader = create_dataloader(test_path, imgsz_test, batch_size // WORLD_SIZE * 2, gs, single_cls,
  202. hyp=hyp, cache=opt.cache_images and not notest, rect=True, rank=-1,
  203. workers=workers,
  204. pad=0.5, prefix=colorstr('val: '))[0]
  205. if not resume:
  206. labels = np.concatenate(dataset.labels, 0)
  207. c = torch.tensor(labels[:, 0]) # classes
  208. # cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
  209. # model._initialize_biases(cf.to(device))
  210. if plots:
  211. plot_labels(labels, names, save_dir, loggers)
  212. if loggers['tb']:
  213. loggers['tb'].add_histogram('classes', c, 0) # TensorBoard
  214. # Anchors
  215. if not opt.noautoanchor:
  216. check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
  217. model.half().float() # pre-reduce anchor precision
  218. # DDP mode
  219. if cuda and RANK != -1:
  220. model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)
  221. # Model parameters
  222. hyp['box'] *= 3. / nl # scale to layers
  223. hyp['cls'] *= nc / 80. * 3. / nl # scale to classes and layers
  224. hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl # scale to image size and layers
  225. hyp['label_smoothing'] = opt.label_smoothing
  226. model.nc = nc # attach number of classes to model
  227. model.hyp = hyp # attach hyperparameters to model
  228. model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou)
  229. model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
  230. model.names = names
  231. # Start training
  232. t0 = time.time()
  233. nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations)
  234. # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
  235. maps = np.zeros(nc) # mAP per class
  236. results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
  237. scheduler.last_epoch = start_epoch - 1 # do not move
  238. scaler = amp.GradScaler(enabled=cuda)
  239. compute_loss = ComputeLoss(model) # init loss class
  240. logger.info(f'Image sizes {imgsz} train, {imgsz_test} test\n'
  241. f'Using {dataloader.num_workers} dataloader workers\n'
  242. f'Logging results to {save_dir}\n'
  243. f'Starting training for {epochs} epochs...')
  244. for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
  245. model.train()
  246. # Update image weights (optional)
  247. if opt.image_weights:
  248. # Generate indices
  249. if RANK in [-1, 0]:
  250. cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
  251. iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
  252. dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
  253. # Broadcast if DDP
  254. if RANK != -1:
  255. indices = (torch.tensor(dataset.indices) if RANK == 0 else torch.zeros(dataset.n)).int()
  256. dist.broadcast(indices, 0)
  257. if RANK != 0:
  258. dataset.indices = indices.cpu().numpy()
  259. # Update mosaic border
  260. # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
  261. # dataset.mosaic_border = [b - imgsz, -b] # height, width borders
  262. mloss = torch.zeros(4, device=device) # mean losses
  263. if RANK != -1:
  264. dataloader.sampler.set_epoch(epoch)
  265. pbar = enumerate(dataloader)
  266. logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'labels', 'img_size'))
  267. if RANK in [-1, 0]:
  268. pbar = tqdm(pbar, total=nb) # progress bar
  269. optimizer.zero_grad()
  270. for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
  271. ni = i + nb * epoch # number integrated batches (since train start)
  272. imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0
  273. # Warmup
  274. if ni <= nw:
  275. xi = [0, nw] # x interp
  276. # model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
  277. accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
  278. for j, x in enumerate(optimizer.param_groups):
  279. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  280. x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
  281. if 'momentum' in x:
  282. x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
  283. # Multi-scale
  284. if opt.multi_scale:
  285. sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
  286. sf = sz / max(imgs.shape[2:]) # scale factor
  287. if sf != 1:
  288. ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
  289. imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
  290. # Forward
  291. with amp.autocast(enabled=cuda):
  292. pred = model(imgs) # forward
  293. loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size
  294. if RANK != -1:
  295. loss *= WORLD_SIZE # gradient averaged between devices in DDP mode
  296. if opt.quad:
  297. loss *= 4.
  298. # Backward
  299. scaler.scale(loss).backward()
  300. # Optimize
  301. if ni % accumulate == 0:
  302. scaler.step(optimizer) # optimizer.step
  303. scaler.update()
  304. optimizer.zero_grad()
  305. if ema:
  306. ema.update(model)
  307. # Print
  308. if RANK in [-1, 0]:
  309. mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
  310. mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
  311. s = ('%10s' * 2 + '%10.4g' * 6) % (
  312. f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1])
  313. pbar.set_description(s)
  314. # Plot
  315. if plots and ni < 3:
  316. f = save_dir / f'train_batch{ni}.jpg' # filename
  317. Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
  318. if loggers['tb'] and ni == 0: # TensorBoard
  319. with warnings.catch_warnings():
  320. warnings.simplefilter('ignore') # suppress jit trace warning
  321. loggers['tb'].add_graph(torch.jit.trace(de_parallel(model), imgs[0:1], strict=False), [])
  322. elif plots and ni == 10 and loggers['wandb']:
  323. wandb_logger.log({'Mosaics': [loggers['wandb'].Image(str(x), caption=x.name) for x in
  324. save_dir.glob('train*.jpg') if x.exists()]})
  325. # end batch ------------------------------------------------------------------------------------------------
  326. # Scheduler
  327. lr = [x['lr'] for x in optimizer.param_groups] # for loggers
  328. scheduler.step()
  329. # DDP process 0 or single-GPU
  330. if RANK in [-1, 0]:
  331. # mAP
  332. ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride', 'class_weights'])
  333. final_epoch = epoch + 1 == epochs
  334. if not notest or final_epoch: # Calculate mAP
  335. wandb_logger.current_epoch = epoch + 1
  336. results, maps, _ = test.run(data_dict,
  337. batch_size=batch_size // WORLD_SIZE * 2,
  338. imgsz=imgsz_test,
  339. model=ema.ema,
  340. single_cls=single_cls,
  341. dataloader=testloader,
  342. save_dir=save_dir,
  343. save_json=is_coco and final_epoch,
  344. verbose=nc < 50 and final_epoch,
  345. plots=plots and final_epoch,
  346. wandb_logger=wandb_logger,
  347. compute_loss=compute_loss)
  348. # Write
  349. with open(results_file, 'a') as f:
  350. f.write(s + '%10.4g' * 7 % results + '\n') # append metrics, val_loss
  351. # Log
  352. tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss
  353. 'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
  354. 'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss
  355. 'x/lr0', 'x/lr1', 'x/lr2'] # params
  356. for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
  357. if loggers['tb']:
  358. loggers['tb'].add_scalar(tag, x, epoch) # TensorBoard
  359. if loggers['wandb']:
  360. wandb_logger.log({tag: x}) # W&B
  361. # Update best mAP
  362. fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
  363. if fi > best_fitness:
  364. best_fitness = fi
  365. wandb_logger.end_epoch(best_result=best_fitness == fi)
  366. # Save model
  367. if (not nosave) or (final_epoch and not evolve): # if save
  368. ckpt = {'epoch': epoch,
  369. 'best_fitness': best_fitness,
  370. 'training_results': results_file.read_text(),
  371. 'model': deepcopy(de_parallel(model)).half(),
  372. 'ema': deepcopy(ema.ema).half(),
  373. 'updates': ema.updates,
  374. 'optimizer': optimizer.state_dict(),
  375. 'wandb_id': wandb_logger.wandb_run.id if loggers['wandb'] else None}
  376. # Save last, best and delete
  377. torch.save(ckpt, last)
  378. if best_fitness == fi:
  379. torch.save(ckpt, best)
  380. if loggers['wandb']:
  381. if ((epoch + 1) % opt.save_period == 0 and not final_epoch) and opt.save_period != -1:
  382. wandb_logger.log_model(last.parent, opt, epoch, fi, best_model=best_fitness == fi)
  383. del ckpt
  384. # end epoch ----------------------------------------------------------------------------------------------------
  385. # end training -----------------------------------------------------------------------------------------------------
  386. if RANK in [-1, 0]:
  387. logger.info(f'{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.\n')
  388. if plots:
  389. plot_results(save_dir=save_dir) # save as results.png
  390. if loggers['wandb']:
  391. files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]]
  392. wandb_logger.log({"Results": [loggers['wandb'].Image(str(save_dir / f), caption=f) for f in files
  393. if (save_dir / f).exists()]})
  394. if not evolve:
  395. if is_coco: # COCO dataset
  396. for m in [last, best] if best.exists() else [last]: # speed, mAP tests
  397. results, _, _ = test.run(data_dict,
  398. batch_size=batch_size // WORLD_SIZE * 2,
  399. imgsz=imgsz_test,
  400. conf_thres=0.001,
  401. iou_thres=0.7,
  402. model=attempt_load(m, device).half(),
  403. single_cls=single_cls,
  404. dataloader=testloader,
  405. save_dir=save_dir,
  406. save_json=True,
  407. plots=False)
  408. # Strip optimizers
  409. for f in last, best:
  410. if f.exists():
  411. strip_optimizer(f) # strip optimizers
  412. if loggers['wandb']: # Log the stripped model
  413. loggers['wandb'].log_artifact(str(best if best.exists() else last), type='model',
  414. name='run_' + wandb_logger.wandb_run.id + '_model',
  415. aliases=['latest', 'best', 'stripped'])
  416. wandb_logger.finish_run()
  417. torch.cuda.empty_cache()
  418. return results
  419. def parse_opt(known=False):
  420. parser = argparse.ArgumentParser()
  421. parser.add_argument('--weights', type=str, default='yolov5s.pt', help='initial weights path')
  422. parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
  423. parser.add_argument('--data', type=str, default='data/coco128.yaml', help='dataset.yaml path')
  424. parser.add_argument('--hyp', type=str, default='data/hyps/hyp.scratch.yaml', help='hyperparameters path')
  425. parser.add_argument('--epochs', type=int, default=300)
  426. parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs')
  427. parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes')
  428. parser.add_argument('--rect', action='store_true', help='rectangular training')
  429. parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
  430. parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
  431. parser.add_argument('--notest', action='store_true', help='only test final epoch')
  432. parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
  433. parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
  434. parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
  435. parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
  436. parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
  437. parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
  438. parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
  439. parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
  440. parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
  441. parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
  442. parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
  443. parser.add_argument('--project', default='runs/train', help='save to project/name')
  444. parser.add_argument('--entity', default=None, help='W&B entity')
  445. parser.add_argument('--name', default='exp', help='save to project/name')
  446. parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
  447. parser.add_argument('--quad', action='store_true', help='quad dataloader')
  448. parser.add_argument('--linear-lr', action='store_true', help='linear LR')
  449. parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
  450. parser.add_argument('--upload_dataset', action='store_true', help='Upload dataset as W&B artifact table')
  451. parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval for W&B')
  452. parser.add_argument('--save_period', type=int, default=-1, help='Log model after every "save_period" epoch')
  453. parser.add_argument('--artifact_alias', type=str, default="latest", help='version of dataset artifact to be used')
  454. parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
  455. opt = parser.parse_known_args()[0] if known else parser.parse_args()
  456. return opt
  457. def main(opt):
  458. set_logging(RANK)
  459. if RANK in [-1, 0]:
  460. print(colorstr('train: ') + ', '.join(f'{k}={v}' for k, v in vars(opt).items()))
  461. check_git_status()
  462. check_requirements(exclude=['thop'])
  463. # Resume
  464. wandb_run = check_wandb_resume(opt)
  465. if opt.resume and not wandb_run: # resume an interrupted run
  466. ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path
  467. assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
  468. with open(Path(ckpt).parent.parent / 'opt.yaml') as f:
  469. opt = argparse.Namespace(**yaml.safe_load(f)) # replace
  470. opt.cfg, opt.weights, opt.resume = '', ckpt, True # reinstate
  471. logger.info('Resuming training from %s' % ckpt)
  472. else:
  473. # opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml')
  474. opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files
  475. assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
  476. opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
  477. opt.name = 'evolve' if opt.evolve else opt.name
  478. opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok | opt.evolve))
  479. # DDP mode
  480. device = select_device(opt.device, batch_size=opt.batch_size)
  481. if LOCAL_RANK != -1:
  482. from datetime import timedelta
  483. assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
  484. torch.cuda.set_device(LOCAL_RANK)
  485. device = torch.device('cuda', LOCAL_RANK)
  486. dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo", timeout=timedelta(seconds=60))
  487. assert opt.batch_size % WORLD_SIZE == 0, '--batch-size must be multiple of CUDA device count'
  488. assert not opt.image_weights, '--image-weights argument is not compatible with DDP training'
  489. # Train
  490. if not opt.evolve:
  491. train(opt.hyp, opt, device)
  492. if WORLD_SIZE > 1 and RANK == 0:
  493. _ = [print('Destroying process group... ', end=''), dist.destroy_process_group(), print('Done.')]
  494. # Evolve hyperparameters (optional)
  495. else:
  496. # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
  497. meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
  498. 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
  499. 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
  500. 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
  501. 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
  502. 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
  503. 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
  504. 'box': (1, 0.02, 0.2), # box loss gain
  505. 'cls': (1, 0.2, 4.0), # cls loss gain
  506. 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
  507. 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
  508. 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
  509. 'iou_t': (0, 0.1, 0.7), # IoU training threshold
  510. 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
  511. 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
  512. 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
  513. 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
  514. 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
  515. 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
  516. 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
  517. 'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
  518. 'scale': (1, 0.0, 0.9), # image scale (+/- gain)
  519. 'shear': (1, 0.0, 10.0), # image shear (+/- deg)
  520. 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
  521. 'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
  522. 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
  523. 'mosaic': (1, 0.0, 1.0), # image mixup (probability)
  524. 'mixup': (1, 0.0, 1.0)} # image mixup (probability)
  525. with open(opt.hyp) as f:
  526. hyp = yaml.safe_load(f) # load hyps dict
  527. assert LOCAL_RANK == -1, 'DDP mode not implemented for --evolve'
  528. opt.notest, opt.nosave = True, True # only test/save final epoch
  529. # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
  530. yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml' # save best result here
  531. if opt.bucket:
  532. os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists
  533. for _ in range(300): # generations to evolve
  534. if Path('evolve.txt').exists(): # if evolve.txt exists: select best hyps and mutate
  535. # Select parent(s)
  536. parent = 'single' # parent selection method: 'single' or 'weighted'
  537. x = np.loadtxt('evolve.txt', ndmin=2)
  538. n = min(5, len(x)) # number of previous results to consider
  539. x = x[np.argsort(-fitness(x))][:n] # top n mutations
  540. w = fitness(x) - fitness(x).min() + 1E-6 # weights (sum > 0)
  541. if parent == 'single' or len(x) == 1:
  542. # x = x[random.randint(0, n - 1)] # random selection
  543. x = x[random.choices(range(n), weights=w)[0]] # weighted selection
  544. elif parent == 'weighted':
  545. x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
  546. # Mutate
  547. mp, s = 0.8, 0.2 # mutation probability, sigma
  548. npr = np.random
  549. npr.seed(int(time.time()))
  550. g = np.array([x[0] for x in meta.values()]) # gains 0-1
  551. ng = len(meta)
  552. v = np.ones(ng)
  553. while all(v == 1): # mutate until a change occurs (prevent duplicates)
  554. v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
  555. for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
  556. hyp[k] = float(x[i + 7] * v[i]) # mutate
  557. # Constrain to limits
  558. for k, v in meta.items():
  559. hyp[k] = max(hyp[k], v[1]) # lower limit
  560. hyp[k] = min(hyp[k], v[2]) # upper limit
  561. hyp[k] = round(hyp[k], 5) # significant digits
  562. # Train mutation
  563. results = train(hyp.copy(), opt, device)
  564. # Write mutation results
  565. print_mutation(hyp.copy(), results, yaml_file, opt.bucket)
  566. # Plot results
  567. plot_evolution(yaml_file)
  568. print(f'Hyperparameter evolution complete. Best results saved as: {yaml_file}\n'
  569. f'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}')
  570. def run(**kwargs):
  571. # Usage: import train; train.run(imgsz=320, weights='yolov5m.pt')
  572. opt = parse_opt(True)
  573. for k, v in kwargs.items():
  574. setattr(opt, k, v)
  575. main(opt)
  576. if __name__ == "__main__":
  577. opt = parse_opt()
  578. main(opt)
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...