Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

train.py 31 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
  1. import argparse
  2. import logging
  3. import math
  4. import os
  5. import random
  6. import time
  7. from pathlib import Path
  8. from threading import Thread
  9. from warnings import warn
  10. import numpy as np
  11. import torch.distributed as dist
  12. import torch.nn as nn
  13. import torch.nn.functional as F
  14. import torch.optim as optim
  15. import torch.optim.lr_scheduler as lr_scheduler
  16. import torch.utils.data
  17. import yaml
  18. from torch.cuda import amp
  19. from torch.nn.parallel import DistributedDataParallel as DDP
  20. from torch.utils.tensorboard import SummaryWriter
  21. from tqdm import tqdm
  22. import test # import test.py to get mAP after each epoch
  23. from models.experimental import attempt_load
  24. from models.yolo import Model
  25. from utils.autoanchor import check_anchors
  26. from utils.datasets import create_dataloader
  27. from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \
  28. fitness, strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, \
  29. print_mutation, set_logging, one_cycle
  30. from utils.google_utils import attempt_download
  31. from utils.loss import compute_loss
  32. from utils.plots import plot_images, plot_labels, plot_results, plot_evolution
  33. from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first
  34. logger = logging.getLogger(__name__)
  35. try:
  36. import wandb
  37. except ImportError:
  38. wandb = None
  39. logger.info("Install Weights & Biases for experiment logging via 'pip install wandb' (recommended)")
  40. def train(hyp, opt, device, tb_writer=None, wandb=None):
  41. logger.info(f'Hyperparameters {hyp}')
  42. save_dir, epochs, batch_size, total_batch_size, weights, rank = \
  43. Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank
  44. # Directories
  45. wdir = save_dir / 'weights'
  46. wdir.mkdir(parents=True, exist_ok=True) # make dir
  47. last = wdir / 'last.pt'
  48. best = wdir / 'best.pt'
  49. results_file = save_dir / 'results.txt'
  50. # Save run settings
  51. with open(save_dir / 'hyp.yaml', 'w') as f:
  52. yaml.dump(hyp, f, sort_keys=False)
  53. with open(save_dir / 'opt.yaml', 'w') as f:
  54. yaml.dump(vars(opt), f, sort_keys=False)
  55. # Configure
  56. plots = not opt.evolve # create plots
  57. cuda = device.type != 'cpu'
  58. init_seeds(2 + rank)
  59. with open(opt.data) as f:
  60. data_dict = yaml.load(f, Loader=yaml.FullLoader) # data dict
  61. with torch_distributed_zero_first(rank):
  62. check_dataset(data_dict) # check
  63. train_path = data_dict['train']
  64. test_path = data_dict['val']
  65. nc = 1 if opt.single_cls else int(data_dict['nc']) # number of classes
  66. names = ['item'] if opt.single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
  67. assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check
  68. # Model
  69. pretrained = weights.endswith('.pt')
  70. if pretrained:
  71. with torch_distributed_zero_first(rank):
  72. attempt_download(weights) # download if not found locally
  73. ckpt = torch.load(weights, map_location=device) # load checkpoint
  74. if hyp.get('anchors'):
  75. ckpt['model'].yaml['anchors'] = round(hyp['anchors']) # force autoanchor
  76. model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc).to(device) # create
  77. exclude = ['anchor'] if opt.cfg or hyp.get('anchors') else [] # exclude keys
  78. state_dict = ckpt['model'].float().state_dict() # to FP32
  79. state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect
  80. model.load_state_dict(state_dict, strict=False) # load
  81. logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report
  82. else:
  83. model = Model(opt.cfg, ch=3, nc=nc).to(device) # create
  84. # Freeze
  85. freeze = [] # parameter names to freeze (full or partial)
  86. for k, v in model.named_parameters():
  87. v.requires_grad = True # train all layers
  88. if any(x in k for x in freeze):
  89. print('freezing %s' % k)
  90. v.requires_grad = False
  91. # Optimizer
  92. nbs = 64 # nominal batch size
  93. accumulate = max(round(nbs / total_batch_size), 1) # accumulate loss before optimizing
  94. hyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decay
  95. logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")
  96. pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
  97. for k, v in model.named_modules():
  98. if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
  99. pg2.append(v.bias) # biases
  100. if isinstance(v, nn.BatchNorm2d):
  101. pg0.append(v.weight) # no decay
  102. elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
  103. pg1.append(v.weight) # apply decay
  104. if opt.adam:
  105. optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
  106. else:
  107. optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
  108. optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
  109. optimizer.add_param_group({'params': pg2}) # add pg2 (biases)
  110. logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
  111. del pg0, pg1, pg2
  112. # Scheduler https://arxiv.org/pdf/1812.01187.pdf
  113. # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
  114. lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
  115. scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
  116. scheduler_wd = one_cycle(.5, 1, epochs) # cosine 0->1
  117. # plot_lr_scheduler(optimizer, scheduler, epochs)
  118. # Logging
  119. if rank in [-1, 0] and wandb and wandb.run is None:
  120. opt.hyp = hyp # add hyperparameters
  121. wandb_run = wandb.init(config=opt, resume="allow",
  122. project='YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem,
  123. name=save_dir.stem,
  124. id=ckpt.get('wandb_id') if 'ckpt' in locals() else None)
  125. loggers = {'wandb': wandb} # loggers dict
  126. # Resume
  127. start_epoch, best_fitness = 0, 0.0
  128. if pretrained:
  129. # Optimizer
  130. if ckpt['optimizer'] is not None:
  131. optimizer.load_state_dict(ckpt['optimizer'])
  132. best_fitness = ckpt['best_fitness']
  133. # Results
  134. if ckpt.get('training_results') is not None:
  135. with open(results_file, 'w') as file:
  136. file.write(ckpt['training_results']) # write results.txt
  137. # Epochs
  138. start_epoch = ckpt['epoch'] + 1
  139. if opt.resume:
  140. assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
  141. if epochs < start_epoch:
  142. logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
  143. (weights, ckpt['epoch'], epochs))
  144. epochs += ckpt['epoch'] # finetune additional epochs
  145. del ckpt, state_dict
  146. # Image sizes
  147. gs = int(model.stride.max()) # grid size (max stride)
  148. nl = model.model[-1].nl # number of detection layers (used for scaling hyp['obj'])
  149. imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples
  150. # DP mode
  151. if cuda and rank == -1 and torch.cuda.device_count() > 1:
  152. model = torch.nn.DataParallel(model)
  153. # SyncBatchNorm
  154. if opt.sync_bn and cuda and rank != -1:
  155. model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
  156. logger.info('Using SyncBatchNorm()')
  157. # EMA
  158. ema = ModelEMA(model) if rank in [-1, 0] else None
  159. # DDP mode
  160. if cuda and rank != -1:
  161. model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank)
  162. # Trainloader
  163. dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
  164. hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=rank,
  165. world_size=opt.world_size, workers=opt.workers,
  166. image_weights=opt.image_weights, quad=opt.quad)
  167. mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class
  168. nb = len(dataloader) # number of batches
  169. assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)
  170. # Process 0
  171. if rank in [-1, 0]:
  172. ema.updates = start_epoch * nb // accumulate # set EMA updates
  173. testloader = create_dataloader(test_path, imgsz_test, total_batch_size, gs, opt, # testloader
  174. hyp=hyp, cache=opt.cache_images and not opt.notest, rect=True,
  175. rank=-1, world_size=opt.world_size, workers=opt.workers, pad=0.5)[0]
  176. if not opt.resume:
  177. labels = np.concatenate(dataset.labels, 0)
  178. c = torch.tensor(labels[:, 0]) # classes
  179. # cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
  180. # model._initialize_biases(cf.to(device))
  181. if plots:
  182. plot_labels(labels, save_dir, loggers)
  183. if tb_writer:
  184. tb_writer.add_histogram('classes', c, 0)
  185. # Anchors
  186. if not opt.noautoanchor:
  187. check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
  188. # Model parameters
  189. hyp['cls'] *= nc / 80. # scale hyp['cls'] to class count
  190. hyp['obj'] *= imgsz ** 2 / 640. ** 2 * 3. / nl # scale hyp['obj'] to image size and output layers
  191. model.nc = nc # attach number of classes to model
  192. model.hyp = hyp # attach hyperparameters to model
  193. model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou)
  194. model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
  195. model.names = names
  196. # Start training
  197. t0 = time.time()
  198. nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations)
  199. # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
  200. maps = np.zeros(nc) # mAP per class
  201. results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
  202. scheduler.last_epoch = start_epoch - 1 # do not move
  203. scaler = amp.GradScaler(enabled=cuda)
  204. logger.info('Image sizes %g train, %g test\n'
  205. 'Using %g dataloader workers\nLogging results to %s\n'
  206. 'Starting training for %g epochs...' % (imgsz, imgsz_test, dataloader.num_workers, save_dir, epochs))
  207. for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
  208. model.train()
  209. # Update image weights (optional)
  210. if opt.image_weights:
  211. # Generate indices
  212. if rank in [-1, 0]:
  213. cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
  214. iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
  215. dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
  216. # Broadcast if DDP
  217. if rank != -1:
  218. indices = (torch.tensor(dataset.indices) if rank == 0 else torch.zeros(dataset.n)).int()
  219. dist.broadcast(indices, 0)
  220. if rank != 0:
  221. dataset.indices = indices.cpu().numpy()
  222. # Update mosaic border
  223. # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
  224. # dataset.mosaic_border = [b - imgsz, -b] # height, width borders
  225. mloss = torch.zeros(4, device=device) # mean losses
  226. if rank != -1:
  227. dataloader.sampler.set_epoch(epoch)
  228. pbar = enumerate(dataloader)
  229. logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'targets', 'img_size'))
  230. if rank in [-1, 0]:
  231. pbar = tqdm(pbar, total=nb) # progress bar
  232. optimizer.zero_grad()
  233. for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
  234. ni = i + nb * epoch # number integrated batches (since train start)
  235. imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0
  236. # Warmup
  237. if ni <= nw:
  238. xi = [0, nw] # x interp
  239. # model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
  240. accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round())
  241. for j, x in enumerate(optimizer.param_groups):
  242. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  243. x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
  244. if 'momentum' in x:
  245. x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
  246. # Multi-scale
  247. if opt.multi_scale:
  248. sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
  249. sf = sz / max(imgs.shape[2:]) # scale factor
  250. if sf != 1:
  251. ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
  252. imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
  253. # Forward
  254. with amp.autocast(enabled=cuda):
  255. pred = model(imgs) # forward
  256. loss, loss_items = compute_loss(pred, targets.to(device), model) # loss scaled by batch_size
  257. if rank != -1:
  258. loss *= opt.world_size # gradient averaged between devices in DDP mode
  259. if opt.quad:
  260. loss *= 4.
  261. # Backward
  262. scaler.scale(loss).backward()
  263. # Optimize
  264. if ni % accumulate == 0:
  265. scaler.step(optimizer) # optimizer.step
  266. scaler.update()
  267. optimizer.zero_grad()
  268. if ema:
  269. ema.update(model)
  270. # Print
  271. if rank in [-1, 0]:
  272. mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
  273. mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
  274. s = ('%10s' * 2 + '%10.4g' * 6) % (
  275. '%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
  276. pbar.set_description(s)
  277. # Plot
  278. if plots and ni < 3:
  279. f = save_dir / f'train_batch{ni}.jpg' # filename
  280. Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
  281. # if tb_writer:
  282. # tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
  283. # tb_writer.add_graph(model, imgs) # add model to tensorboard
  284. elif plots and ni == 3 and wandb:
  285. wandb.log({"Mosaics": [wandb.Image(str(x), caption=x.name) for x in save_dir.glob('train*.jpg')]})
  286. # end batch ------------------------------------------------------------------------------------------------
  287. # end epoch ----------------------------------------------------------------------------------------------------
  288. # Scheduler
  289. lr = [x['lr'] for x in optimizer.param_groups] # for tensorboard
  290. scheduler.step()
  291. optimizer.param_groups[1]['weight_decay'] = hyp['weight_decay'] * scheduler_wd(epoch)
  292. # DDP process 0 or single-GPU
  293. if rank in [-1, 0]:
  294. # mAP
  295. if ema:
  296. ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride', 'class_weights'])
  297. final_epoch = epoch + 1 == epochs
  298. if not opt.notest or final_epoch: # Calculate mAP
  299. results, maps, times = test.test(opt.data,
  300. batch_size=total_batch_size,
  301. imgsz=imgsz_test,
  302. model=ema.ema,
  303. single_cls=opt.single_cls,
  304. dataloader=testloader,
  305. save_dir=save_dir,
  306. plots=plots and final_epoch,
  307. log_imgs=opt.log_imgs if wandb else 0)
  308. # Write
  309. with open(results_file, 'a') as f:
  310. f.write(s + '%10.4g' * 7 % results + '\n') # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
  311. if len(opt.name) and opt.bucket:
  312. os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name))
  313. # Log
  314. tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss
  315. 'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
  316. 'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss
  317. 'x/lr0', 'x/lr1', 'x/lr2'] # params
  318. for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
  319. if tb_writer:
  320. tb_writer.add_scalar(tag, x, epoch) # tensorboard
  321. if wandb:
  322. wandb.log({tag: x}) # W&B
  323. # Update best mAP
  324. fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
  325. if fi > best_fitness:
  326. best_fitness = fi
  327. # Save model
  328. save = (not opt.nosave) or (final_epoch and not opt.evolve)
  329. if save:
  330. with open(results_file, 'r') as f: # create checkpoint
  331. ckpt = {'epoch': epoch,
  332. 'best_fitness': best_fitness,
  333. 'training_results': f.read(),
  334. 'model': ema.ema,
  335. 'optimizer': None if final_epoch else optimizer.state_dict(),
  336. 'wandb_id': wandb_run.id if wandb else None}
  337. # Save last, best and delete
  338. torch.save(ckpt, last)
  339. if best_fitness == fi:
  340. torch.save(ckpt, best)
  341. del ckpt
  342. # end epoch ----------------------------------------------------------------------------------------------------
  343. # end training
  344. if rank in [-1, 0]:
  345. # Strip optimizers
  346. final = best if best.exists() else last # final model
  347. for f in [last, best]:
  348. if f.exists():
  349. strip_optimizer(f) # strip optimizers
  350. if opt.bucket:
  351. os.system(f'gsutil cp {final} gs://{opt.bucket}/weights') # upload
  352. # Plots
  353. if plots:
  354. plot_results(save_dir=save_dir) # save as results.png
  355. if wandb:
  356. files = ['results.png', 'precision_recall_curve.png', 'confusion_matrix.png']
  357. wandb.log({"Results": [wandb.Image(str(save_dir / f), caption=f) for f in files
  358. if (save_dir / f).exists()]})
  359. if opt.log_artifacts:
  360. wandb.log_artifact(artifact_or_path=str(final), type='model', name=save_dir.stem)
  361. # Test best.pt
  362. logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
  363. if opt.data.endswith('coco.yaml') and nc == 80: # if COCO
  364. for conf, iou, save_json in ([0.25, 0.45, False], [0.001, 0.65, True]): # speed, mAP tests
  365. results, _, _ = test.test(opt.data,
  366. batch_size=total_batch_size,
  367. imgsz=imgsz_test,
  368. conf_thres=conf,
  369. iou_thres=iou,
  370. model=attempt_load(final, device).half(),
  371. single_cls=opt.single_cls,
  372. dataloader=testloader,
  373. save_dir=save_dir,
  374. save_json=save_json,
  375. plots=False)
  376. else:
  377. dist.destroy_process_group()
  378. wandb.run.finish() if wandb and wandb.run else None
  379. torch.cuda.empty_cache()
  380. return results
  381. if __name__ == '__main__':
  382. parser = argparse.ArgumentParser()
  383. parser.add_argument('--weights', type=str, default='yolov5s.pt', help='initial weights path')
  384. parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
  385. parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path')
  386. parser.add_argument('--hyp', type=str, default='data/hyp.scratch.yaml', help='hyperparameters path')
  387. parser.add_argument('--epochs', type=int, default=300)
  388. parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs')
  389. parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes')
  390. parser.add_argument('--rect', action='store_true', help='rectangular training')
  391. parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
  392. parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
  393. parser.add_argument('--notest', action='store_true', help='only test final epoch')
  394. parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
  395. parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
  396. parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
  397. parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
  398. parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
  399. parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
  400. parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
  401. parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
  402. parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
  403. parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
  404. parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
  405. parser.add_argument('--log-imgs', type=int, default=16, help='number of images for W&B logging, max 100')
  406. parser.add_argument('--log-artifacts', action='store_true', help='log artifacts, i.e. final trained model')
  407. parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
  408. parser.add_argument('--project', default='runs/train', help='save to project/name')
  409. parser.add_argument('--name', default='exp', help='save to project/name')
  410. parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
  411. parser.add_argument('--quad', action='store_true', help='quad dataloader')
  412. opt = parser.parse_args()
  413. # Set DDP variables
  414. opt.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
  415. opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1
  416. set_logging(opt.global_rank)
  417. if opt.global_rank in [-1, 0]:
  418. check_git_status()
  419. # Resume
  420. if opt.resume: # resume an interrupted run
  421. ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path
  422. assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
  423. apriori = opt.global_rank, opt.local_rank, opt.batch_size
  424. with open(Path(ckpt).parent.parent / 'opt.yaml') as f:
  425. opt = argparse.Namespace(**yaml.load(f, Loader=yaml.FullLoader)) # replace
  426. opt.cfg, opt.weights, opt.resume, opt.global_rank, opt.local_rank, opt.batch_size = '', ckpt, True, *apriori
  427. logger.info('Resuming training from %s' % ckpt)
  428. else:
  429. # opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml')
  430. opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files
  431. assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
  432. opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
  433. opt.name = 'evolve' if opt.evolve else opt.name
  434. opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok | opt.evolve) # increment run
  435. # DDP mode
  436. device = select_device(opt.device, batch_size=opt.batch_size)
  437. opt.total_batch_size = opt.batch_size
  438. if opt.local_rank != -1:
  439. assert torch.cuda.device_count() > opt.local_rank
  440. torch.cuda.set_device(opt.local_rank)
  441. device = torch.device('cuda', opt.local_rank)
  442. dist.init_process_group(backend='nccl', init_method='env://') # distributed backend
  443. assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count'
  444. opt.batch_size = opt.total_batch_size // opt.world_size
  445. # Hyperparameters
  446. with open(opt.hyp) as f:
  447. hyp = yaml.load(f, Loader=yaml.FullLoader) # load hyps
  448. if 'box' not in hyp:
  449. warn('Compatibility: %s missing "box" which was renamed from "giou" in %s' %
  450. (opt.hyp, 'https://github.com/ultralytics/yolov5/pull/1120'))
  451. hyp['box'] = hyp.pop('giou')
  452. # Train
  453. logger.info(opt)
  454. if not opt.evolve:
  455. tb_writer = None # init loggers
  456. if opt.global_rank in [-1, 0]:
  457. logger.info(f'Start Tensorboard with "tensorboard --logdir {opt.project}", view at http://localhost:6006/')
  458. tb_writer = SummaryWriter(opt.save_dir) # Tensorboard
  459. train(hyp, opt, device, tb_writer, wandb)
  460. # Evolve hyperparameters (optional)
  461. else:
  462. # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
  463. meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
  464. 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
  465. 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
  466. 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
  467. 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
  468. 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
  469. 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
  470. 'box': (1, 0.02, 0.2), # box loss gain
  471. 'cls': (1, 0.2, 4.0), # cls loss gain
  472. 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
  473. 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
  474. 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
  475. 'iou_t': (0, 0.1, 0.7), # IoU training threshold
  476. 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
  477. 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
  478. 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
  479. 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
  480. 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
  481. 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
  482. 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
  483. 'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
  484. 'scale': (1, 0.0, 0.9), # image scale (+/- gain)
  485. 'shear': (1, 0.0, 10.0), # image shear (+/- deg)
  486. 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
  487. 'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
  488. 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
  489. 'mosaic': (1, 0.0, 1.0), # image mixup (probability)
  490. 'mixup': (1, 0.0, 1.0)} # image mixup (probability)
  491. assert opt.local_rank == -1, 'DDP mode not implemented for --evolve'
  492. opt.notest, opt.nosave = True, True # only test/save final epoch
  493. # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
  494. yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml' # save best result here
  495. if opt.bucket:
  496. os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists
  497. for _ in range(300): # generations to evolve
  498. if Path('evolve.txt').exists(): # if evolve.txt exists: select best hyps and mutate
  499. # Select parent(s)
  500. parent = 'single' # parent selection method: 'single' or 'weighted'
  501. x = np.loadtxt('evolve.txt', ndmin=2)
  502. n = min(5, len(x)) # number of previous results to consider
  503. x = x[np.argsort(-fitness(x))][:n] # top n mutations
  504. w = fitness(x) - fitness(x).min() # weights
  505. if parent == 'single' or len(x) == 1:
  506. # x = x[random.randint(0, n - 1)] # random selection
  507. x = x[random.choices(range(n), weights=w)[0]] # weighted selection
  508. elif parent == 'weighted':
  509. x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
  510. # Mutate
  511. mp, s = 0.8, 0.2 # mutation probability, sigma
  512. npr = np.random
  513. npr.seed(int(time.time()))
  514. g = np.array([x[0] for x in meta.values()]) # gains 0-1
  515. ng = len(meta)
  516. v = np.ones(ng)
  517. while all(v == 1): # mutate until a change occurs (prevent duplicates)
  518. v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
  519. for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
  520. hyp[k] = float(x[i + 7] * v[i]) # mutate
  521. # Constrain to limits
  522. for k, v in meta.items():
  523. hyp[k] = max(hyp[k], v[1]) # lower limit
  524. hyp[k] = min(hyp[k], v[2]) # upper limit
  525. hyp[k] = round(hyp[k], 5) # significant digits
  526. # Train mutation
  527. results = train(hyp.copy(), opt, device, wandb=wandb)
  528. # Write mutation results
  529. print_mutation(hyp.copy(), results, yaml_file, opt.bucket)
  530. # Plot results
  531. plot_evolution(yaml_file)
  532. print(f'Hyperparameter evolution complete. Best results saved as: {yaml_file}\n'
  533. f'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}')
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...