Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

train.py 32 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
  1. # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
  2. """
  3. Train a YOLOv5 model on a custom dataset
  4. Usage:
  5. $ python path/to/train.py --data coco128.yaml --weights yolov5s.pt --img 640
  6. """
  7. import argparse
  8. from argparse import Namespace
  9. import logging
  10. import math
  11. import os
  12. import random
  13. import sys
  14. import time
  15. from copy import deepcopy
  16. from pathlib import Path
  17. import numpy as np
  18. import torch
  19. import torch.distributed as dist
  20. import torch.nn as nn
  21. import yaml
  22. from torch.cuda import amp
  23. from torch.nn.parallel import DistributedDataParallel as DDP
  24. from torch.optim import Adam, SGD, lr_scheduler
  25. from tqdm import tqdm
  26. FILE = Path(__file__).resolve()
  27. ROOT = FILE.parents[0] # YOLOv5 root directory
  28. if str(ROOT) not in sys.path:
  29. sys.path.append(str(ROOT)) # add ROOT to PATH
  30. ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
  31. import val # for end-of-epoch mAP
  32. from models.experimental import attempt_load
  33. from models.yolo import Model
  34. from utils.autoanchor import check_anchors
  35. from utils.datasets import create_dataloader
  36. from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \
  37. strip_optimizer, get_latest_run, check_dataset, check_git_status, check_img_size, check_requirements, \
  38. check_file, check_yaml, check_suffix, print_mutation, set_logging, one_cycle, colorstr, methods, not_increment_path
  39. from utils.downloads import attempt_download
  40. from utils.loss import ComputeLoss
  41. from utils.plots import plot_labels, plot_evolve
  42. from utils.torch_utils import EarlyStopping, ModelEMA, de_parallel, intersect_dicts, select_device, \
  43. torch_distributed_zero_first
  44. from utils.loggers.wandb.wandb_utils import check_wandb_resume
  45. from utils.metrics import fitness
  46. from utils.loggers import Loggers
  47. from utils.callbacks import Callbacks
  48. LOGGER = logging.getLogger(__name__)
  49. LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
  50. RANK = int(os.getenv('RANK', -1))
  51. WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
  52. def train(hyp, # path/to/hyp.yaml or hyp dictionary
  53. opt,
  54. device,
  55. callbacks
  56. ):
  57. save_dir, epochs, batch_size, weights, single_cls, evolve, \
  58. data, cfg, resume, noval, nosave, workers, freeze, dvc = \
  59. Path(opt.save_dir), opt.epochs, opt.batch_size, \
  60. opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
  61. opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze, opt.dvc
  62. # Directories
  63. w = save_dir / 'weights' # weights dir
  64. w.mkdir(parents=True, exist_ok=True) # make dir
  65. last, best = w / 'last.pt', w / 'best.pt'
  66. # Hyperparameters
  67. if isinstance(hyp, str):
  68. with open(hyp, errors='ignore') as f:
  69. hyp = yaml.safe_load(f) # load hyps dict
  70. LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
  71. # Save run settings
  72. with open(save_dir / 'hyp.yaml', 'w') as f:
  73. yaml.safe_dump(hyp, f, sort_keys=False)
  74. with open(save_dir / 'opt.yaml', 'w') as f:
  75. yaml.safe_dump(vars(opt), f, sort_keys=False)
  76. data_dict = None
  77. # Loggers
  78. if RANK in [-1, 0]:
  79. loggers = Loggers(save_dir, weights, opt, hyp, LOGGER) # loggers instance
  80. if loggers.wandb:
  81. data_dict = loggers.wandb.data_dict
  82. if resume:
  83. weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp
  84. # Register actions
  85. for k in methods(loggers):
  86. callbacks.register_action(k, callback=getattr(loggers, k))
  87. # DVC
  88. # if dvc:
  89. # Config
  90. plots = not evolve # create plots
  91. cuda = device.type != 'cpu'
  92. init_seeds(1 + RANK)
  93. with torch_distributed_zero_first(LOCAL_RANK):
  94. data_dict = data_dict or check_dataset(data) # check if None
  95. train_path, val_path = data_dict['train'], data_dict['val']
  96. nc = 1 if single_cls else int(data_dict['nc']) # number of classes
  97. names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
  98. assert len(names) == nc, f'{len(names)} names found for nc={nc} dataset in {data}' # check
  99. is_coco = data.endswith('coco.yaml') and nc == 80 # COCO dataset
  100. # Model
  101. check_suffix(weights, '.pt') # check weights
  102. pretrained = weights.endswith('.pt')
  103. if pretrained:
  104. with torch_distributed_zero_first(LOCAL_RANK):
  105. weights = attempt_download(weights) # download if not found locally
  106. ckpt = torch.load(weights, map_location=device) # load checkpoint
  107. model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
  108. exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys
  109. csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
  110. csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect
  111. model.load_state_dict(csd, strict=False) # load
  112. LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') # report
  113. else:
  114. model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
  115. # Freeze
  116. freeze = [f'model.{x}.' for x in range(freeze)] # layers to freeze
  117. for k, v in model.named_parameters():
  118. v.requires_grad = True # train all layers
  119. if any(x in k for x in freeze):
  120. print(f'freezing {k}')
  121. v.requires_grad = False
  122. # Optimizer
  123. nbs = 64 # nominal batch size
  124. accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing
  125. hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay
  126. LOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}")
  127. g0, g1, g2 = [], [], [] # optimizer parameter groups
  128. for v in model.modules():
  129. if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): # bias
  130. g2.append(v.bias)
  131. if isinstance(v, nn.BatchNorm2d): # weight (no decay)
  132. g0.append(v.weight)
  133. elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): # weight (with decay)
  134. g1.append(v.weight)
  135. if opt.adam:
  136. optimizer = Adam(g0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
  137. else:
  138. optimizer = SGD(g0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
  139. optimizer.add_param_group({'params': g1, 'weight_decay': hyp['weight_decay']}) # add g1 with weight_decay
  140. optimizer.add_param_group({'params': g2}) # add g2 (biases)
  141. LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__} with parameter groups "
  142. f"{len(g0)} weight, {len(g1)} weight (no decay), {len(g2)} bias")
  143. del g0, g1, g2
  144. # Scheduler
  145. if opt.linear_lr:
  146. lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
  147. else:
  148. lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
  149. scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs)
  150. # EMA
  151. ema = ModelEMA(model) if RANK in [-1, 0] else None
  152. # Resume
  153. start_epoch, best_fitness = 0, 0.0
  154. if pretrained:
  155. # Optimizer
  156. if ckpt['optimizer'] is not None:
  157. optimizer.load_state_dict(ckpt['optimizer'])
  158. best_fitness = ckpt['best_fitness']
  159. # EMA
  160. if ema and ckpt.get('ema'):
  161. ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
  162. ema.updates = ckpt['updates']
  163. # Epochs
  164. start_epoch = ckpt['epoch'] + 1
  165. if resume:
  166. assert start_epoch > 0, f'{weights} training to {epochs} epochs is finished, nothing to resume.'
  167. if epochs < start_epoch:
  168. LOGGER.info(f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs.")
  169. epochs += ckpt['epoch'] # finetune additional epochs
  170. del ckpt, csd
  171. # Image sizes
  172. gs = max(int(model.stride.max()), 32) # grid size (max stride)
  173. nl = model.model[-1].nl # number of detection layers (used for scaling hyp['obj'])
  174. imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple
  175. # DP mode
  176. if cuda and RANK == -1 and torch.cuda.device_count() > 1:
  177. logging.warning('DP not recommended, instead use torch.distributed.run for best DDP Multi-GPU results.\n'
  178. 'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.')
  179. model = torch.nn.DataParallel(model)
  180. # SyncBatchNorm
  181. if opt.sync_bn and cuda and RANK != -1:
  182. model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
  183. LOGGER.info('Using SyncBatchNorm()')
  184. # Trainloader
  185. train_loader, dataset = create_dataloader(train_path, imgsz, batch_size // WORLD_SIZE, gs, single_cls,
  186. hyp=hyp, augment=True, cache=opt.cache, rect=opt.rect, rank=LOCAL_RANK,
  187. workers=workers, image_weights=opt.image_weights, quad=opt.quad,
  188. prefix=colorstr('train: '))
  189. mlc = int(np.concatenate(dataset.labels, 0)[:, 0].max()) # max label class
  190. nb = len(train_loader) # number of batches
  191. assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'
  192. # Process 0
  193. if RANK in [-1, 0]:
  194. val_loader = create_dataloader(val_path, imgsz, batch_size // WORLD_SIZE * 2, gs, single_cls,
  195. hyp=hyp, cache=None if noval else opt.cache, rect=True, rank=-1,
  196. workers=workers, pad=0.5,
  197. prefix=colorstr('val: '))[0]
  198. if not resume:
  199. labels = np.concatenate(dataset.labels, 0)
  200. # c = torch.tensor(labels[:, 0]) # classes
  201. # cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
  202. # model._initialize_biases(cf.to(device))
  203. if plots:
  204. plot_labels(labels, names, save_dir)
  205. # Anchors
  206. if not opt.noautoanchor:
  207. check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
  208. model.half().float() # pre-reduce anchor precision
  209. callbacks.run('on_pretrain_routine_end')
  210. # DDP mode
  211. if cuda and RANK != -1:
  212. model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)
  213. # Model parameters
  214. hyp['box'] *= 3. / nl # scale to layers
  215. hyp['cls'] *= nc / 80. * 3. / nl # scale to classes and layers
  216. hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl # scale to image size and layers
  217. hyp['label_smoothing'] = opt.label_smoothing
  218. model.nc = nc # attach number of classes to model
  219. model.hyp = hyp # attach hyperparameters to model
  220. model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
  221. model.names = names
  222. # Start training
  223. t0 = time.time()
  224. nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations)
  225. # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
  226. last_opt_step = -1
  227. maps = np.zeros(nc) # mAP per class
  228. results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
  229. scheduler.last_epoch = start_epoch - 1 # do not move
  230. scaler = amp.GradScaler(enabled=cuda)
  231. stopper = EarlyStopping(patience=opt.patience)
  232. compute_loss = ComputeLoss(model) # init loss class
  233. LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
  234. f'Using {train_loader.num_workers} dataloader workers\n'
  235. f"Logging results to {colorstr('bold', save_dir)}\n"
  236. f'Starting training for {epochs} epochs...')
  237. for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
  238. model.train()
  239. # Update image weights (optional, single-GPU only)
  240. if opt.image_weights:
  241. cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
  242. iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
  243. dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
  244. # Update mosaic border (optional)
  245. # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
  246. # dataset.mosaic_border = [b - imgsz, -b] # height, width borders
  247. mloss = torch.zeros(3, device=device) # mean losses
  248. if RANK != -1:
  249. train_loader.sampler.set_epoch(epoch)
  250. pbar = enumerate(train_loader)
  251. LOGGER.info(('\n' + '%10s' * 7) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'labels', 'img_size'))
  252. if RANK in [-1, 0]:
  253. pbar = tqdm(pbar, total=nb) # progress bar
  254. optimizer.zero_grad()
  255. for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
  256. ni = i + nb * epoch # number integrated batches (since train start)
  257. imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0
  258. # Warmup
  259. if ni <= nw:
  260. xi = [0, nw] # x interp
  261. # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
  262. accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
  263. for j, x in enumerate(optimizer.param_groups):
  264. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  265. x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
  266. if 'momentum' in x:
  267. x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
  268. # Multi-scale
  269. if opt.multi_scale:
  270. sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
  271. sf = sz / max(imgs.shape[2:]) # scale factor
  272. if sf != 1:
  273. ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
  274. imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
  275. # Forward
  276. with amp.autocast(enabled=cuda):
  277. pred = model(imgs) # forward
  278. loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size
  279. if RANK != -1:
  280. loss *= WORLD_SIZE # gradient averaged between devices in DDP mode
  281. if opt.quad:
  282. loss *= 4.
  283. # Backward
  284. scaler.scale(loss).backward()
  285. # Optimize
  286. if ni - last_opt_step >= accumulate:
  287. scaler.step(optimizer) # optimizer.step
  288. scaler.update()
  289. optimizer.zero_grad()
  290. if ema:
  291. ema.update(model)
  292. last_opt_step = ni
  293. # Log
  294. if RANK in [-1, 0]:
  295. mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
  296. mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB)
  297. pbar.set_description(('%10s' * 2 + '%10.4g' * 5) % (
  298. f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]))
  299. callbacks.run('on_train_batch_end', ni, model, imgs, targets, paths, plots, opt.sync_bn)
  300. # end batch ------------------------------------------------------------------------------------------------
  301. # Scheduler
  302. lr = [x['lr'] for x in optimizer.param_groups] # for loggers
  303. scheduler.step()
  304. if RANK in [-1, 0]:
  305. # mAP
  306. callbacks.run('on_train_epoch_end', epoch=epoch)
  307. ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])
  308. final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
  309. if not noval or final_epoch: # Calculate mAP
  310. results, maps, _ = val.run(data_dict,
  311. batch_size=batch_size // WORLD_SIZE * 2,
  312. imgsz=imgsz,
  313. model=ema.ema,
  314. single_cls=single_cls,
  315. dataloader=val_loader,
  316. save_dir=save_dir,
  317. plots=False,
  318. callbacks=callbacks,
  319. compute_loss=compute_loss)
  320. # Update best mAP
  321. fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
  322. if fi > best_fitness:
  323. best_fitness = fi
  324. log_vals = list(mloss) + list(results) + lr
  325. callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi)
  326. # Save model
  327. if (not nosave) or (final_epoch and not evolve): # if save
  328. ckpt = {'epoch': epoch,
  329. 'best_fitness': best_fitness,
  330. 'model': deepcopy(de_parallel(model)).half(),
  331. 'ema': deepcopy(ema.ema).half(),
  332. 'updates': ema.updates,
  333. 'optimizer': optimizer.state_dict(),
  334. 'wandb_id': loggers.wandb.wandb_run.id if loggers.wandb else None}
  335. # Save last, best and delete
  336. torch.save(ckpt, last)
  337. if best_fitness == fi:
  338. torch.save(ckpt, best)
  339. if (epoch > 0) and (opt.save_period > 0) and (epoch % opt.save_period == 0):
  340. torch.save(ckpt, w / f'epoch{epoch}.pt')
  341. del ckpt
  342. callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi)
  343. # Stop Single-GPU
  344. if RANK == -1 and stopper(epoch=epoch, fitness=fi):
  345. break
  346. # Stop DDP TODO: known issues shttps://github.com/ultralytics/yolov5/pull/4576
  347. # stop = stopper(epoch=epoch, fitness=fi)
  348. # if RANK == 0:
  349. # dist.broadcast_object_list([stop], 0) # broadcast 'stop' to all ranks
  350. # Stop DPP
  351. # with torch_distributed_zero_first(RANK):
  352. # if stop:
  353. # break # must break all DDP ranks
  354. # end epoch ----------------------------------------------------------------------------------------------------
  355. # end training -----------------------------------------------------------------------------------------------------
  356. if RANK in [-1, 0]:
  357. LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')
  358. for f in last, best:
  359. if f.exists():
  360. strip_optimizer(f) # strip optimizers
  361. if f is best:
  362. LOGGER.info(f'\nValidating {f}...')
  363. results, _, _ = val.run(data_dict,
  364. batch_size=batch_size // WORLD_SIZE * 2,
  365. imgsz=imgsz,
  366. model=attempt_load(f, device).half(),
  367. iou_thres=0.65 if is_coco else 0.60, # best pycocotools results at 0.65
  368. single_cls=single_cls,
  369. dataloader=val_loader,
  370. save_dir=save_dir,
  371. save_json=is_coco,
  372. verbose=True,
  373. plots=True,
  374. callbacks=callbacks,
  375. compute_loss=compute_loss) # val best model with plots
  376. if is_coco:
  377. callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi)
  378. callbacks.run('on_train_end', last, best, plots, epoch, results)
  379. LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
  380. torch.cuda.empty_cache()
  381. return results
  382. def parse_opt(known=False):
  383. parser = argparse.ArgumentParser()
  384. parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='initial weights path')
  385. parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
  386. parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
  387. parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch.yaml', help='hyperparameters path')
  388. parser.add_argument('--epochs', type=int, default=300)
  389. parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs')
  390. parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
  391. parser.add_argument('--rect', action='store_true', help='rectangular training')
  392. parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
  393. parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
  394. parser.add_argument('--noval', action='store_true', help='only validate final epoch')
  395. parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
  396. parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
  397. parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
  398. parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"')
  399. parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
  400. parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
  401. parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
  402. parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
  403. parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
  404. parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
  405. parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
  406. parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name')
  407. parser.add_argument('--name', default='exp', help='save to project/name')
  408. parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
  409. parser.add_argument('--quad', action='store_true', help='quad dataloader')
  410. parser.add_argument('--linear-lr', action='store_true', help='linear LR')
  411. parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
  412. parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
  413. parser.add_argument('--dvc', action='store_true',default=True, help="Using DVC to get the models")
  414. parser.add_argument('--freeze', type=int, default=0, help='Number of layers to freeze. backbone=10, all=24')
  415. parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
  416. parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
  417. # Weights & Biases arguments
  418. parser.add_argument('--entity', default=None, help='W&B: Entity')
  419. parser.add_argument('--upload_dataset', action='store_true', help='W&B: Upload dataset as artifact table')
  420. parser.add_argument('--bbox_interval', type=int, default=-1, help='W&B: Set bounding-box image logging interval')
  421. parser.add_argument('--artifact_alias', type=str, default='latest', help='W&B: Version of dataset artifact to use')
  422. opt = parser.parse_known_args()[0] if known else parser.parse_args()
  423. return opt
  424. def main(opt, callbacks=Callbacks()):
  425. # Checks
  426. set_logging(RANK)
  427. if RANK in [-1, 0]:
  428. print(colorstr('train: ') + ', '.join(f'{k}={v}' for k, v in vars(opt).items()))
  429. check_git_status()
  430. check_requirements(requirements=FILE.parent / 'requirements.txt', exclude=['thop'])
  431. # Resume
  432. if opt.resume and not check_wandb_resume(opt) and not opt.evolve: # resume an interrupted run
  433. ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path
  434. assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
  435. with open(Path(ckpt).parent.parent / 'opt.yaml', errors='ignore') as f:
  436. opt = argparse.Namespace(**yaml.safe_load(f)) # replace
  437. opt.cfg, opt.weights, opt.resume = '', ckpt, True # reinstate
  438. LOGGER.info(f'Resuming training from {ckpt}')
  439. else:
  440. opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \
  441. check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project) # checks
  442. assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
  443. if opt.evolve:
  444. opt.project = str(ROOT / 'runs/evolve')
  445. opt.exist_ok, opt.resume = opt.resume, False # pass resume to exist_ok and disable resume
  446. if opt.dvc:
  447. opt.save_dir = str(not_increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))
  448. else:
  449. opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))
  450. # DDP mode
  451. device = select_device(opt.device, batch_size=opt.batch_size)
  452. if LOCAL_RANK != -1:
  453. assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
  454. assert opt.batch_size % WORLD_SIZE == 0, '--batch-size must be multiple of CUDA device count'
  455. assert not opt.image_weights, '--image-weights argument is not compatible with DDP training'
  456. assert not opt.evolve, '--evolve argument is not compatible with DDP training'
  457. torch.cuda.set_device(LOCAL_RANK)
  458. device = torch.device('cuda', LOCAL_RANK)
  459. dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")
  460. # Train
  461. if not opt.evolve:
  462. train(opt.hyp, opt, device, callbacks)
  463. if WORLD_SIZE > 1 and RANK == 0:
  464. _ = [print('Destroying process group... ', end=''), dist.destroy_process_group(), print('Done.')]
  465. # Evolve hyperparameters (optional)
  466. else:
  467. # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
  468. meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
  469. 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
  470. 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
  471. 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
  472. 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
  473. 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
  474. 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
  475. 'box': (1, 0.02, 0.2), # box loss gain
  476. 'cls': (1, 0.2, 4.0), # cls loss gain
  477. 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
  478. 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
  479. 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
  480. 'iou_t': (0, 0.1, 0.7), # IoU training threshold
  481. 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
  482. 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
  483. 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
  484. 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
  485. 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
  486. 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
  487. 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
  488. 'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
  489. 'scale': (1, 0.0, 0.9), # image scale (+/- gain)
  490. 'shear': (1, 0.0, 10.0), # image shear (+/- deg)
  491. 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
  492. 'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
  493. 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
  494. 'mosaic': (1, 0.0, 1.0), # image mixup (probability)
  495. 'mixup': (1, 0.0, 1.0), # image mixup (probability)
  496. 'copy_paste': (1, 0.0, 1.0)} # segment copy-paste (probability)
  497. with open(opt.hyp, errors='ignore') as f:
  498. hyp = yaml.safe_load(f) # load hyps dict
  499. if 'anchors' not in hyp: # anchors commented in hyp.yaml
  500. hyp['anchors'] = 3
  501. opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) # only val/save final epoch
  502. # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
  503. evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv'
  504. if opt.bucket:
  505. os.system(f'gsutil cp gs://{opt.bucket}/evolve.csv {save_dir}') # download evolve.csv if exists
  506. for _ in range(opt.evolve): # generations to evolve
  507. if evolve_csv.exists(): # if evolve.csv exists: select best hyps and mutate
  508. # Select parent(s)
  509. parent = 'single' # parent selection method: 'single' or 'weighted'
  510. x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1)
  511. n = min(5, len(x)) # number of previous results to consider
  512. x = x[np.argsort(-fitness(x))][:n] # top n mutations
  513. w = fitness(x) - fitness(x).min() + 1E-6 # weights (sum > 0)
  514. if parent == 'single' or len(x) == 1:
  515. # x = x[random.randint(0, n - 1)] # random selection
  516. x = x[random.choices(range(n), weights=w)[0]] # weighted selection
  517. elif parent == 'weighted':
  518. x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
  519. # Mutate
  520. mp, s = 0.8, 0.2 # mutation probability, sigma
  521. npr = np.random
  522. npr.seed(int(time.time()))
  523. g = np.array([meta[k][0] for k in hyp.keys()]) # gains 0-1
  524. ng = len(meta)
  525. v = np.ones(ng)
  526. while all(v == 1): # mutate until a change occurs (prevent duplicates)
  527. v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
  528. for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
  529. hyp[k] = float(x[i + 7] * v[i]) # mutate
  530. # Constrain to limits
  531. for k, v in meta.items():
  532. hyp[k] = max(hyp[k], v[1]) # lower limit
  533. hyp[k] = min(hyp[k], v[2]) # upper limit
  534. hyp[k] = round(hyp[k], 5) # significant digits
  535. # Train mutation
  536. results = train(hyp.copy(), opt, device, callbacks)
  537. # Write mutation results
  538. print_mutation(results, hyp.copy(), save_dir, opt.bucket)
  539. # Plot results
  540. plot_evolve(evolve_csv)
  541. print(f'Hyperparameter evolution finished\n'
  542. f"Results saved to {colorstr('bold', save_dir)}\n"
  543. f'Use best hyperparameters example: $ python train.py --hyp {evolve_yaml}')
  544. def run(**kwargs):
  545. # Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt')
  546. opt = parse_opt(True)
  547. for k, v in kwargs.items():
  548. setattr(opt, k, v)
  549. main(opt)
  550. if __name__ == "__main__":
  551. opt = parse_opt()
  552. if opt.dvc:
  553. with open('params.yml') as f:
  554. data_dict = yaml.safe_load(f)
  555. opt = Namespace(**data_dict)
  556. main(opt)
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...