Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

train.py 32 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
  1. import argparse
  2. import logging
  3. import math
  4. import os
  5. import random
  6. import time
  7. from copy import deepcopy
  8. from pathlib import Path
  9. from threading import Thread
  10. import numpy as np
  11. import torch.distributed as dist
  12. import torch.nn as nn
  13. import torch.nn.functional as F
  14. import torch.optim as optim
  15. import torch.optim.lr_scheduler as lr_scheduler
  16. import torch.utils.data
  17. import yaml
  18. from torch.cuda import amp
  19. from torch.nn.parallel import DistributedDataParallel as DDP
  20. from torch.utils.tensorboard import SummaryWriter
  21. from tqdm import tqdm
  22. import test # import test.py to get mAP after each epoch
  23. from models.experimental import attempt_load
  24. from models.yolo import Model
  25. from utils.autoanchor import check_anchors
  26. from utils.datasets import create_dataloader
  27. from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \
  28. fitness, strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, \
  29. check_requirements, print_mutation, set_logging, one_cycle, colorstr
  30. from utils.google_utils import attempt_download
  31. from utils.loss import ComputeLoss
  32. from utils.plots import plot_images, plot_labels, plot_results, plot_evolution
  33. from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first, is_parallel
  34. logger = logging.getLogger(__name__)
  35. def train(hyp, opt, device, tb_writer=None, wandb=None):
  36. logger.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
  37. save_dir, epochs, batch_size, total_batch_size, weights, rank = \
  38. Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank
  39. # Directories
  40. wdir = save_dir / 'weights'
  41. wdir.mkdir(parents=True, exist_ok=True) # make dir
  42. last = wdir / 'last.pt'
  43. best = wdir / 'best.pt'
  44. results_file = save_dir / 'results.txt'
  45. # Save run settings
  46. with open(save_dir / 'hyp.yaml', 'w') as f:
  47. yaml.dump(hyp, f, sort_keys=False)
  48. with open(save_dir / 'opt.yaml', 'w') as f:
  49. yaml.dump(vars(opt), f, sort_keys=False)
  50. # Configure
  51. plots = not opt.evolve # create plots
  52. cuda = device.type != 'cpu'
  53. init_seeds(2 + rank, deterministic=opt.evolve)
  54. with open(opt.data) as f:
  55. data_dict = yaml.load(f, Loader=yaml.SafeLoader) # data dict
  56. with torch_distributed_zero_first(rank):
  57. check_dataset(data_dict) # check
  58. train_path = data_dict['train']
  59. test_path = data_dict['val']
  60. nc = 1 if opt.single_cls else int(data_dict['nc']) # number of classes
  61. names = ['item'] if opt.single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
  62. assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check
  63. # Model
  64. pretrained = weights.endswith('.pt')
  65. if pretrained:
  66. with torch_distributed_zero_first(rank):
  67. attempt_download(weights) # download if not found locally
  68. ckpt = torch.load(weights, map_location=device) # load checkpoint
  69. model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
  70. exclude = ['anchor'] if (opt.cfg or hyp.get('anchors')) and not opt.resume else [] # exclude keys
  71. state_dict = ckpt['model'].float().state_dict() # to FP32
  72. state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect
  73. model.load_state_dict(state_dict, strict=False) # load
  74. logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report
  75. else:
  76. model = Model(opt.cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
  77. # Freeze
  78. freeze = [] # parameter names to freeze (full or partial)
  79. for k, v in model.named_parameters():
  80. v.requires_grad = True # train all layers
  81. if any(x in k for x in freeze):
  82. print('freezing %s' % k)
  83. v.requires_grad = False
  84. # Optimizer
  85. nbs = 64 # nominal batch size
  86. accumulate = max(round(nbs / total_batch_size), 1) # accumulate loss before optimizing
  87. hyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decay
  88. logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")
  89. pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
  90. for k, v in model.named_modules():
  91. if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
  92. pg2.append(v.bias) # biases
  93. if isinstance(v, nn.BatchNorm2d):
  94. pg0.append(v.weight) # no decay
  95. elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
  96. pg1.append(v.weight) # apply decay
  97. if opt.adam:
  98. optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
  99. else:
  100. optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
  101. optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
  102. optimizer.add_param_group({'params': pg2}) # add pg2 (biases)
  103. logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
  104. del pg0, pg1, pg2
  105. # Scheduler https://arxiv.org/pdf/1812.01187.pdf
  106. # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
  107. if opt.linear_lr:
  108. lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
  109. else:
  110. lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
  111. scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
  112. # plot_lr_scheduler(optimizer, scheduler, epochs)
  113. # Logging
  114. if rank in [-1, 0] and wandb and wandb.run is None:
  115. opt.hyp = hyp # add hyperparameters
  116. wandb_run = wandb.init(config=opt, resume="allow",
  117. project='YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem,
  118. name=save_dir.stem,
  119. entity=opt.entity,
  120. id=ckpt.get('wandb_id') if 'ckpt' in locals() else None)
  121. loggers = {'wandb': wandb} # loggers dict
  122. # EMA
  123. ema = ModelEMA(model) if rank in [-1, 0] else None
  124. # Resume
  125. start_epoch, best_fitness = 0, 0.0
  126. if pretrained:
  127. # Optimizer
  128. if ckpt['optimizer'] is not None:
  129. optimizer.load_state_dict(ckpt['optimizer'])
  130. best_fitness = ckpt['best_fitness']
  131. # EMA
  132. if ema and ckpt.get('ema'):
  133. ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
  134. ema.updates = ckpt['updates']
  135. # Results
  136. if ckpt.get('training_results') is not None:
  137. results_file.write_text(ckpt['training_results']) # write results.txt
  138. # Epochs
  139. start_epoch = ckpt['epoch'] + 1
  140. if opt.resume:
  141. assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
  142. if epochs < start_epoch:
  143. logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
  144. (weights, ckpt['epoch'], epochs))
  145. epochs += ckpt['epoch'] # finetune additional epochs
  146. del ckpt, state_dict
  147. # Image sizes
  148. gs = max(int(model.stride.max()), 32) # grid size (max stride)
  149. nl = model.model[-1].nl # number of detection layers (used for scaling hyp['obj'])
  150. imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples
  151. # DP mode
  152. if cuda and rank == -1 and torch.cuda.device_count() > 1:
  153. model = torch.nn.DataParallel(model)
  154. # SyncBatchNorm
  155. if opt.sync_bn and cuda and rank != -1:
  156. model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
  157. logger.info('Using SyncBatchNorm()')
  158. # Trainloader
  159. dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
  160. hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=rank,
  161. world_size=opt.world_size, workers=opt.workers,
  162. image_weights=opt.image_weights, quad=opt.quad, prefix=colorstr('train: '))
  163. mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class
  164. nb = len(dataloader) # number of batches
  165. assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)
  166. # Process 0
  167. if rank in [-1, 0]:
  168. testloader = create_dataloader(test_path, imgsz_test, batch_size * 2, gs, opt, # testloader
  169. hyp=hyp, cache=opt.cache_images and not opt.notest, rect=True, rank=-1,
  170. world_size=opt.world_size, workers=opt.workers,
  171. pad=0.5, prefix=colorstr('val: '))[0]
  172. if not opt.resume:
  173. labels = np.concatenate(dataset.labels, 0)
  174. c = torch.tensor(labels[:, 0]) # classes
  175. # cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
  176. # model._initialize_biases(cf.to(device))
  177. if plots:
  178. plot_labels(labels, save_dir, loggers)
  179. if tb_writer:
  180. tb_writer.add_histogram('classes', c, 0)
  181. # Anchors
  182. if not opt.noautoanchor:
  183. check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
  184. model.half().float() # pre-reduce anchor precision
  185. # DDP mode
  186. if cuda and rank != -1:
  187. model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank)
  188. # Model parameters
  189. hyp['box'] *= 3. / nl # scale to layers
  190. hyp['cls'] *= nc / 80. * 3. / nl # scale to classes and layers
  191. hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl # scale to image size and layers
  192. model.nc = nc # attach number of classes to model
  193. model.hyp = hyp # attach hyperparameters to model
  194. model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou)
  195. model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
  196. model.names = names
  197. # Start training
  198. t0 = time.time()
  199. nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations)
  200. # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
  201. maps = np.zeros(nc) # mAP per class
  202. results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
  203. scheduler.last_epoch = start_epoch - 1 # do not move
  204. scaler = amp.GradScaler(enabled=cuda)
  205. compute_loss = ComputeLoss(model) # init loss class
  206. logger.info(f'Image sizes {imgsz} train, {imgsz_test} test\n'
  207. f'Using {dataloader.num_workers} dataloader workers\n'
  208. f'Logging results to {save_dir}\n'
  209. f'Starting training for {epochs} epochs...')
  210. for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
  211. model.train()
  212. # Update image weights (optional)
  213. if opt.image_weights:
  214. # Generate indices
  215. if rank in [-1, 0]:
  216. cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
  217. iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
  218. dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
  219. # Broadcast if DDP
  220. if rank != -1:
  221. indices = (torch.tensor(dataset.indices) if rank == 0 else torch.zeros(dataset.n)).int()
  222. dist.broadcast(indices, 0)
  223. if rank != 0:
  224. dataset.indices = indices.cpu().numpy()
  225. # Update mosaic border
  226. # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
  227. # dataset.mosaic_border = [b - imgsz, -b] # height, width borders
  228. mloss = torch.zeros(4, device=device) # mean losses
  229. if rank != -1:
  230. dataloader.sampler.set_epoch(epoch)
  231. pbar = enumerate(dataloader)
  232. logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'labels', 'img_size'))
  233. if rank in [-1, 0]:
  234. pbar = tqdm(pbar, total=nb) # progress bar
  235. optimizer.zero_grad()
  236. for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
  237. ni = i + nb * epoch # number integrated batches (since train start)
  238. imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0
  239. # Warmup
  240. if ni <= nw:
  241. xi = [0, nw] # x interp
  242. # model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
  243. accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round())
  244. for j, x in enumerate(optimizer.param_groups):
  245. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  246. x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
  247. if 'momentum' in x:
  248. x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
  249. # Multi-scale
  250. if opt.multi_scale:
  251. sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
  252. sf = sz / max(imgs.shape[2:]) # scale factor
  253. if sf != 1:
  254. ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
  255. imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
  256. # Forward
  257. with amp.autocast(enabled=cuda):
  258. pred = model(imgs) # forward
  259. loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size
  260. if rank != -1:
  261. loss *= opt.world_size # gradient averaged between devices in DDP mode
  262. if opt.quad:
  263. loss *= 4.
  264. # Backward
  265. scaler.scale(loss).backward()
  266. # Optimize
  267. if ni % accumulate == 0:
  268. scaler.step(optimizer) # optimizer.step
  269. scaler.update()
  270. optimizer.zero_grad()
  271. if ema:
  272. ema.update(model)
  273. # Print
  274. if rank in [-1, 0]:
  275. mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
  276. mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
  277. s = ('%10s' * 2 + '%10.4g' * 6) % (
  278. '%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
  279. pbar.set_description(s)
  280. # Plot
  281. if plots and ni < 3:
  282. f = save_dir / f'train_batch{ni}.jpg' # filename
  283. Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
  284. # if tb_writer:
  285. # tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
  286. # tb_writer.add_graph(model, imgs) # add model to tensorboard
  287. elif plots and ni == 10 and wandb:
  288. wandb.log({"Mosaics": [wandb.Image(str(x), caption=x.name) for x in save_dir.glob('train*.jpg')
  289. if x.exists()]}, commit=False)
  290. # end batch ------------------------------------------------------------------------------------------------
  291. # end epoch ----------------------------------------------------------------------------------------------------
  292. # Scheduler
  293. lr = [x['lr'] for x in optimizer.param_groups] # for tensorboard
  294. scheduler.step()
  295. # DDP process 0 or single-GPU
  296. if rank in [-1, 0]:
  297. # mAP
  298. ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride', 'class_weights'])
  299. final_epoch = epoch + 1 == epochs
  300. if not opt.notest or final_epoch: # Calculate mAP
  301. results, maps, times = test.test(opt.data,
  302. batch_size=batch_size * 2,
  303. imgsz=imgsz_test,
  304. model=ema.ema,
  305. single_cls=opt.single_cls,
  306. dataloader=testloader,
  307. save_dir=save_dir,
  308. verbose=nc < 50 and final_epoch,
  309. plots=plots and final_epoch,
  310. log_imgs=opt.log_imgs if wandb else 0,
  311. compute_loss=compute_loss)
  312. # Write
  313. with open(results_file, 'a') as f:
  314. f.write(s + '%10.4g' * 7 % results + '\n') # append metrics, val_loss
  315. if len(opt.name) and opt.bucket:
  316. os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name))
  317. # Log
  318. tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss
  319. 'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
  320. 'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss
  321. 'x/lr0', 'x/lr1', 'x/lr2'] # params
  322. for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
  323. if tb_writer:
  324. tb_writer.add_scalar(tag, x, epoch) # tensorboard
  325. if wandb:
  326. wandb.log({tag: x}, step=epoch, commit=tag == tags[-1]) # W&B
  327. # Update best mAP
  328. fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
  329. if fi > best_fitness:
  330. best_fitness = fi
  331. # Save model
  332. if (not opt.nosave) or (final_epoch and not opt.evolve): # if save
  333. ckpt = {'epoch': epoch,
  334. 'best_fitness': best_fitness,
  335. 'training_results': results_file.read_text(),
  336. 'model': deepcopy(model.module if is_parallel(model) else model).half(),
  337. 'ema': deepcopy(ema.ema).half(),
  338. 'updates': ema.updates,
  339. 'optimizer': optimizer.state_dict(),
  340. 'wandb_id': wandb_run.id if wandb else None}
  341. # Save last, best and delete
  342. torch.save(ckpt, last)
  343. if best_fitness == fi:
  344. torch.save(ckpt, best)
  345. del ckpt
  346. # end epoch ----------------------------------------------------------------------------------------------------
  347. # end training
  348. if rank in [-1, 0]:
  349. # Strip optimizers
  350. final = best if best.exists() else last # final model
  351. for f in last, best:
  352. if f.exists():
  353. strip_optimizer(f)
  354. if opt.bucket:
  355. os.system(f'gsutil cp {final} gs://{opt.bucket}/weights') # upload
  356. # Plots
  357. if plots:
  358. plot_results(save_dir=save_dir) # save as results.png
  359. if wandb:
  360. files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]]
  361. wandb.log({"Results": [wandb.Image(str(save_dir / f), caption=f) for f in files
  362. if (save_dir / f).exists()]})
  363. if opt.log_artifacts:
  364. wandb.log_artifact(artifact_or_path=str(final), type='model', name=save_dir.stem)
  365. # Test best.pt
  366. logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
  367. if opt.data.endswith('coco.yaml') and nc == 80: # if COCO
  368. for m in (last, best) if best.exists() else (last): # speed, mAP tests
  369. results, _, _ = test.test(opt.data,
  370. batch_size=batch_size * 2,
  371. imgsz=imgsz_test,
  372. conf_thres=0.001,
  373. iou_thres=0.7,
  374. model=attempt_load(m, device).half(),
  375. single_cls=opt.single_cls,
  376. dataloader=testloader,
  377. save_dir=save_dir,
  378. save_json=True,
  379. plots=False)
  380. else:
  381. dist.destroy_process_group()
  382. wandb.run.finish() if wandb and wandb.run else None
  383. torch.cuda.empty_cache()
  384. return results
  385. if __name__ == '__main__':
  386. parser = argparse.ArgumentParser()
  387. parser.add_argument('--weights', type=str, default='yolov5s.pt', help='initial weights path')
  388. parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
  389. parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path')
  390. parser.add_argument('--hyp', type=str, default='data/hyp.scratch.yaml', help='hyperparameters path')
  391. parser.add_argument('--epochs', type=int, default=300)
  392. parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs')
  393. parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes')
  394. parser.add_argument('--rect', action='store_true', help='rectangular training')
  395. parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
  396. parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
  397. parser.add_argument('--notest', action='store_true', help='only test final epoch')
  398. parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
  399. parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
  400. parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
  401. parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
  402. parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
  403. parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
  404. parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
  405. parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
  406. parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
  407. parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
  408. parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
  409. parser.add_argument('--log-imgs', type=int, default=16, help='number of images for W&B logging, max 100')
  410. parser.add_argument('--log-artifacts', action='store_true', help='log artifacts, i.e. final trained model')
  411. parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
  412. parser.add_argument('--project', default='runs/train', help='save to project/name')
  413. parser.add_argument('--entity', default=None, help='W&B entity')
  414. parser.add_argument('--name', default='exp', help='save to project/name')
  415. parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
  416. parser.add_argument('--quad', action='store_true', help='quad dataloader')
  417. parser.add_argument('--linear-lr', action='store_true', help='linear LR')
  418. opt = parser.parse_args()
  419. # Set DDP variables
  420. opt.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
  421. opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1
  422. set_logging(opt.global_rank)
  423. if opt.global_rank in [-1, 0]:
  424. check_git_status()
  425. check_requirements()
  426. # Resume
  427. if opt.resume: # resume an interrupted run
  428. ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path
  429. assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
  430. apriori = opt.global_rank, opt.local_rank
  431. with open(Path(ckpt).parent.parent / 'opt.yaml') as f:
  432. opt = argparse.Namespace(**yaml.load(f, Loader=yaml.SafeLoader)) # replace
  433. opt.cfg, opt.weights, opt.resume, opt.batch_size, opt.global_rank, opt.local_rank = '', ckpt, True, opt.total_batch_size, *apriori # reinstate
  434. logger.info('Resuming training from %s' % ckpt)
  435. else:
  436. # opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml')
  437. opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files
  438. assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
  439. opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
  440. opt.name = 'evolve' if opt.evolve else opt.name
  441. opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok | opt.evolve) # increment run
  442. # DDP mode
  443. opt.total_batch_size = opt.batch_size
  444. device = select_device(opt.device, batch_size=opt.batch_size)
  445. if opt.local_rank != -1:
  446. assert torch.cuda.device_count() > opt.local_rank
  447. torch.cuda.set_device(opt.local_rank)
  448. device = torch.device('cuda', opt.local_rank)
  449. dist.init_process_group(backend='nccl', init_method='env://') # distributed backend
  450. assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count'
  451. opt.batch_size = opt.total_batch_size // opt.world_size
  452. # Hyperparameters
  453. with open(opt.hyp) as f:
  454. hyp = yaml.load(f, Loader=yaml.SafeLoader) # load hyps
  455. # Train
  456. logger.info(opt)
  457. try:
  458. import wandb
  459. except ImportError:
  460. wandb = None
  461. prefix = colorstr('wandb: ')
  462. logger.info(f"{prefix}Install Weights & Biases for YOLOv5 logging with 'pip install wandb' (recommended)")
  463. if not opt.evolve:
  464. tb_writer = None # init loggers
  465. if opt.global_rank in [-1, 0]:
  466. logger.info(f'Start Tensorboard with "tensorboard --logdir {opt.project}", view at http://localhost:6006/')
  467. tb_writer = SummaryWriter(opt.save_dir) # Tensorboard
  468. train(hyp, opt, device, tb_writer, wandb)
  469. # Evolve hyperparameters (optional)
  470. else:
  471. # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
  472. meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
  473. 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
  474. 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
  475. 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
  476. 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
  477. 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
  478. 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
  479. 'box': (1, 0.02, 0.2), # box loss gain
  480. 'cls': (1, 0.2, 4.0), # cls loss gain
  481. 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
  482. 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
  483. 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
  484. 'iou_t': (0, 0.1, 0.7), # IoU training threshold
  485. 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
  486. 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
  487. 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
  488. 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
  489. 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
  490. 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
  491. 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
  492. 'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
  493. 'scale': (1, 0.0, 0.9), # image scale (+/- gain)
  494. 'shear': (1, 0.0, 10.0), # image shear (+/- deg)
  495. 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
  496. 'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
  497. 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
  498. 'mosaic': (1, 0.0, 1.0), # image mixup (probability)
  499. 'mixup': (1, 0.0, 1.0)} # image mixup (probability)
  500. assert opt.local_rank == -1, 'DDP mode not implemented for --evolve'
  501. opt.notest, opt.nosave = True, True # only test/save final epoch
  502. # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
  503. yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml' # save best result here
  504. if opt.bucket:
  505. os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists
  506. for _ in range(300): # generations to evolve
  507. if Path('evolve.txt').exists(): # if evolve.txt exists: select best hyps and mutate
  508. # Select parent(s)
  509. parent = 'single' # parent selection method: 'single' or 'weighted'
  510. x = np.loadtxt('evolve.txt', ndmin=2)
  511. n = min(5, len(x)) # number of previous results to consider
  512. x = x[np.argsort(-fitness(x))][:n] # top n mutations
  513. w = fitness(x) - fitness(x).min() # weights
  514. if parent == 'single' or len(x) == 1:
  515. # x = x[random.randint(0, n - 1)] # random selection
  516. x = x[random.choices(range(n), weights=w)[0]] # weighted selection
  517. elif parent == 'weighted':
  518. x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
  519. # Mutate
  520. mp, s = 0.8, 0.2 # mutation probability, sigma
  521. npr = np.random
  522. npr.seed(int(time.time()))
  523. g = np.array([x[0] for x in meta.values()]) # gains 0-1
  524. ng = len(meta)
  525. v = np.ones(ng)
  526. while all(v == 1): # mutate until a change occurs (prevent duplicates)
  527. v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
  528. for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
  529. hyp[k] = float(x[i + 7] * v[i]) # mutate
  530. # Constrain to limits
  531. for k, v in meta.items():
  532. hyp[k] = max(hyp[k], v[1]) # lower limit
  533. hyp[k] = min(hyp[k], v[2]) # upper limit
  534. hyp[k] = round(hyp[k], 5) # significant digits
  535. # Train mutation
  536. results = train(hyp.copy(), opt, device, wandb=wandb)
  537. # Write mutation results
  538. print_mutation(hyp.copy(), results, yaml_file, opt.bucket)
  539. # Plot results
  540. plot_evolution(yaml_file)
  541. print(f'Hyperparameter evolution complete. Best results saved as: {yaml_file}\n'
  542. f'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}')
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...