Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

train.py 32 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
  1. import argparse
  2. import logging
  3. import math
  4. import os
  5. import random
  6. import time
  7. from pathlib import Path
  8. from threading import Thread
  9. import numpy as np
  10. import torch.distributed as dist
  11. import torch.nn as nn
  12. import torch.nn.functional as F
  13. import torch.optim as optim
  14. import torch.optim.lr_scheduler as lr_scheduler
  15. import torch.utils.data
  16. import yaml
  17. from torch.cuda import amp
  18. from torch.nn.parallel import DistributedDataParallel as DDP
  19. from torch.utils.tensorboard import SummaryWriter
  20. from tqdm import tqdm
  21. import test # import test.py to get mAP after each epoch
  22. from models.experimental import attempt_load
  23. from models.yolo import Model
  24. from utils.autoanchor import check_anchors
  25. from utils.datasets import create_dataloader
  26. from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \
  27. fitness, strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, \
  28. check_requirements, print_mutation, set_logging, one_cycle, colorstr
  29. from utils.google_utils import attempt_download
  30. from utils.loss import ComputeLoss
  31. from utils.plots import plot_images, plot_labels, plot_results, plot_evolution
  32. from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first
  33. logger = logging.getLogger(__name__)
  34. def train(hyp, opt, device, tb_writer=None, wandb=None):
  35. logger.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
  36. save_dir, epochs, batch_size, total_batch_size, weights, rank = \
  37. Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank
  38. # Directories
  39. wdir = save_dir / 'weights'
  40. wdir.mkdir(parents=True, exist_ok=True) # make dir
  41. last = wdir / 'last.pt'
  42. best = wdir / 'best.pt'
  43. results_file = save_dir / 'results.txt'
  44. # Save run settings
  45. with open(save_dir / 'hyp.yaml', 'w') as f:
  46. yaml.dump(hyp, f, sort_keys=False)
  47. with open(save_dir / 'opt.yaml', 'w') as f:
  48. yaml.dump(vars(opt), f, sort_keys=False)
  49. # Configure
  50. plots = not opt.evolve # create plots
  51. cuda = device.type != 'cpu'
  52. init_seeds(2 + rank)
  53. with open(opt.data) as f:
  54. data_dict = yaml.load(f, Loader=yaml.SafeLoader) # data dict
  55. with torch_distributed_zero_first(rank):
  56. check_dataset(data_dict) # check
  57. train_path = data_dict['train']
  58. test_path = data_dict['val']
  59. nc = 1 if opt.single_cls else int(data_dict['nc']) # number of classes
  60. names = ['item'] if opt.single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
  61. assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check
  62. # Model
  63. pretrained = weights.endswith('.pt')
  64. if pretrained:
  65. with torch_distributed_zero_first(rank):
  66. attempt_download(weights) # download if not found locally
  67. ckpt = torch.load(weights, map_location=device) # load checkpoint
  68. if hyp.get('anchors'):
  69. ckpt['model'].yaml['anchors'] = round(hyp['anchors']) # force autoanchor
  70. model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc).to(device) # create
  71. exclude = ['anchor'] if opt.cfg or hyp.get('anchors') else [] # exclude keys
  72. state_dict = ckpt['model'].float().state_dict() # to FP32
  73. state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect
  74. model.load_state_dict(state_dict, strict=False) # load
  75. logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report
  76. else:
  77. model = Model(opt.cfg, ch=3, nc=nc).to(device) # create
  78. # Freeze
  79. freeze = [] # parameter names to freeze (full or partial)
  80. for k, v in model.named_parameters():
  81. v.requires_grad = True # train all layers
  82. if any(x in k for x in freeze):
  83. print('freezing %s' % k)
  84. v.requires_grad = False
  85. # Optimizer
  86. nbs = 64 # nominal batch size
  87. accumulate = max(round(nbs / total_batch_size), 1) # accumulate loss before optimizing
  88. hyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decay
  89. logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")
  90. pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
  91. for k, v in model.named_modules():
  92. if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
  93. pg2.append(v.bias) # biases
  94. if isinstance(v, nn.BatchNorm2d):
  95. pg0.append(v.weight) # no decay
  96. elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
  97. pg1.append(v.weight) # apply decay
  98. if opt.adam:
  99. optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
  100. else:
  101. optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
  102. optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
  103. optimizer.add_param_group({'params': pg2}) # add pg2 (biases)
  104. logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
  105. del pg0, pg1, pg2
  106. # Scheduler https://arxiv.org/pdf/1812.01187.pdf
  107. # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
  108. if opt.linear_lr:
  109. lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
  110. else:
  111. lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
  112. scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
  113. # plot_lr_scheduler(optimizer, scheduler, epochs)
  114. # Logging
  115. if rank in [-1, 0] and wandb and wandb.run is None:
  116. opt.hyp = hyp # add hyperparameters
  117. wandb_run = wandb.init(config=opt, resume="allow",
  118. project='YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem,
  119. name=save_dir.stem,
  120. id=ckpt.get('wandb_id') if 'ckpt' in locals() else None)
  121. loggers = {'wandb': wandb} # loggers dict
  122. # Resume
  123. start_epoch, best_fitness = 0, 0.0
  124. if pretrained:
  125. # Optimizer
  126. if ckpt['optimizer'] is not None:
  127. optimizer.load_state_dict(ckpt['optimizer'])
  128. best_fitness = ckpt['best_fitness']
  129. # Results
  130. if ckpt.get('training_results') is not None:
  131. with open(results_file, 'w') as file:
  132. file.write(ckpt['training_results']) # write results.txt
  133. # Epochs
  134. start_epoch = ckpt['epoch'] + 1
  135. if opt.resume:
  136. assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
  137. if epochs < start_epoch:
  138. logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
  139. (weights, ckpt['epoch'], epochs))
  140. epochs += ckpt['epoch'] # finetune additional epochs
  141. del ckpt, state_dict
  142. # Image sizes
  143. gs = int(model.stride.max()) # grid size (max stride)
  144. nl = model.model[-1].nl # number of detection layers (used for scaling hyp['obj'])
  145. imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples
  146. # DP mode
  147. if cuda and rank == -1 and torch.cuda.device_count() > 1:
  148. model = torch.nn.DataParallel(model)
  149. # SyncBatchNorm
  150. if opt.sync_bn and cuda and rank != -1:
  151. model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
  152. logger.info('Using SyncBatchNorm()')
  153. # EMA
  154. ema = ModelEMA(model) if rank in [-1, 0] else None
  155. # DDP mode
  156. if cuda and rank != -1:
  157. model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank)
  158. # Trainloader
  159. dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
  160. hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=rank,
  161. world_size=opt.world_size, workers=opt.workers,
  162. image_weights=opt.image_weights, quad=opt.quad, prefix=colorstr('train: '))
  163. mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class
  164. nb = len(dataloader) # number of batches
  165. assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)
  166. # Process 0
  167. if rank in [-1, 0]:
  168. ema.updates = start_epoch * nb // accumulate # set EMA updates
  169. testloader = create_dataloader(test_path, imgsz_test, batch_size * 2, gs, opt, # testloader
  170. hyp=hyp, cache=opt.cache_images and not opt.notest, rect=True, rank=-1,
  171. world_size=opt.world_size, workers=opt.workers,
  172. pad=0.5, prefix=colorstr('val: '))[0]
  173. if not opt.resume:
  174. labels = np.concatenate(dataset.labels, 0)
  175. c = torch.tensor(labels[:, 0]) # classes
  176. # cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
  177. # model._initialize_biases(cf.to(device))
  178. if plots:
  179. plot_labels(labels, save_dir, loggers)
  180. if tb_writer:
  181. tb_writer.add_histogram('classes', c, 0)
  182. # Anchors
  183. if not opt.noautoanchor:
  184. check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
  185. # Model parameters
  186. hyp['box'] *= 3. / nl # scale to layers
  187. hyp['cls'] *= nc / 80. * 3. / nl # scale to classes and layers
  188. hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl # scale to image size and layers
  189. model.nc = nc # attach number of classes to model
  190. model.hyp = hyp # attach hyperparameters to model
  191. model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou)
  192. model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
  193. model.names = names
  194. # Start training
  195. t0 = time.time()
  196. nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations)
  197. # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
  198. maps = np.zeros(nc) # mAP per class
  199. results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
  200. scheduler.last_epoch = start_epoch - 1 # do not move
  201. scaler = amp.GradScaler(enabled=cuda)
  202. compute_loss = ComputeLoss(model, autobalance=opt.autobalance) # init loss class
  203. logger.info(f'Image sizes {imgsz} train, {imgsz_test} test\n'
  204. f'Using {dataloader.num_workers} dataloader workers\n'
  205. f'Logging results to {save_dir}\n'
  206. f'Starting training for {epochs} epochs...')
  207. for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
  208. model.train()
  209. torch.backends.cudnn.benchmark = True
  210. # Update image weights (optional)
  211. if opt.image_weights:
  212. # Generate indices
  213. if rank in [-1, 0]:
  214. cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
  215. iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
  216. dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
  217. # Broadcast if DDP
  218. if rank != -1:
  219. indices = (torch.tensor(dataset.indices) if rank == 0 else torch.zeros(dataset.n)).int()
  220. dist.broadcast(indices, 0)
  221. if rank != 0:
  222. dataset.indices = indices.cpu().numpy()
  223. # Update mosaic border
  224. # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
  225. # dataset.mosaic_border = [b - imgsz, -b] # height, width borders
  226. mloss = torch.zeros(13, device=device) # mean losses
  227. if rank != -1:
  228. dataloader.sampler.set_epoch(epoch)
  229. pbar = enumerate(dataloader)
  230. logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'targets', 'img_size'))
  231. if rank in [-1, 0]:
  232. pbar = tqdm(pbar, total=nb) # progress bar
  233. optimizer.zero_grad()
  234. for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
  235. ni = i + nb * epoch # number integrated batches (since train start)
  236. imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0
  237. # Warmup
  238. if ni <= nw:
  239. xi = [0, nw] # x interp
  240. # model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
  241. accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round())
  242. for j, x in enumerate(optimizer.param_groups):
  243. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  244. x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
  245. if 'momentum' in x:
  246. x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
  247. # Multi-scale
  248. if opt.multi_scale:
  249. sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
  250. sf = sz / max(imgs.shape[2:]) # scale factor
  251. if sf != 1:
  252. ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
  253. imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
  254. # Forward
  255. with amp.autocast(enabled=cuda):
  256. pred = model(imgs) # forward
  257. loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size
  258. if rank != -1:
  259. loss *= opt.world_size # gradient averaged between devices in DDP mode
  260. if opt.quad:
  261. loss *= 4.
  262. # Backward
  263. scaler.scale(loss).backward()
  264. # Optimize
  265. if ni % accumulate == 0:
  266. scaler.step(optimizer) # optimizer.step
  267. scaler.update()
  268. optimizer.zero_grad()
  269. if ema:
  270. ema.update(model)
  271. # Print
  272. if rank in [-1, 0]:
  273. mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
  274. mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
  275. s = f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1], *compute_loss.balance
  276. s = ('%10s' * 2 + '%10.4g' * (len(s) - 2)) % s
  277. pbar.set_description(s)
  278. # Plot
  279. if plots and ni < 3:
  280. f = save_dir / f'train_batch{ni}.jpg' # filename
  281. Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
  282. # if tb_writer:
  283. # tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
  284. # tb_writer.add_graph(model, imgs) # add model to tensorboard
  285. elif plots and ni == 10 and wandb:
  286. wandb.log({"Mosaics": [wandb.Image(str(x), caption=x.name) for x in save_dir.glob('train*.jpg')
  287. if x.exists()]}, commit=False)
  288. # end batch ------------------------------------------------------------------------------------------------
  289. # end epoch ----------------------------------------------------------------------------------------------------
  290. # Scheduler
  291. lr = [x['lr'] for x in optimizer.param_groups] # for tensorboard
  292. scheduler.step()
  293. # DDP process 0 or single-GPU
  294. if rank in [-1, 0]:
  295. # mAP
  296. if ema:
  297. ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride', 'class_weights'])
  298. final_epoch = epoch + 1 == epochs
  299. if not opt.notest or final_epoch: # Calculate mAP
  300. results, maps, times = test.test(opt.data,
  301. batch_size=batch_size * 2,
  302. imgsz=imgsz_test,
  303. model=ema.ema,
  304. single_cls=opt.single_cls,
  305. dataloader=testloader,
  306. save_dir=save_dir,
  307. verbose=nc < 50 and final_epoch,
  308. plots=plots and final_epoch,
  309. log_imgs=opt.log_imgs if wandb else 0,
  310. compute_loss=compute_loss)
  311. # Write
  312. with open(results_file, 'a') as f:
  313. f.write(
  314. s + '%10.4g' * len(results) % results + '\n') # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
  315. if len(opt.name) and opt.bucket:
  316. os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name))
  317. # Log
  318. tags = ['train/box_loss3', 'train/box_loss4', 'train/box_loss5', 'train/box_loss6', # train loss
  319. 'train/obj_loss3', 'train/obj_loss4', 'train/obj_loss5', 'train/obj_loss6', # train loss
  320. 'train/cls_loss3', 'train/cls_loss4', 'train/cls_loss5', 'train/cls_loss6', # train loss
  321. 'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
  322. 'val/box_loss3', 'val/box_loss4', 'val/box_loss5', 'val/box_loss6', # train loss
  323. 'val/obj_loss3', 'val/obj_loss4', 'val/obj_loss5', 'val/obj_loss6', # train loss
  324. 'val/cls_loss3', 'val/cls_loss4', 'val/cls_loss5', 'val/cls_loss6', # train loss
  325. 'x/lr0', 'x/lr1', 'x/lr2'] # params
  326. for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
  327. if tb_writer:
  328. tb_writer.add_scalar(tag, x, epoch) # tensorboard
  329. if wandb:
  330. wandb.log({tag: x}, step=epoch, commit=tag == tags[-1]) # W&B
  331. # Update best mAP
  332. fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
  333. if fi > best_fitness:
  334. best_fitness = fi
  335. # Save model
  336. save = (not opt.nosave) or (final_epoch and not opt.evolve)
  337. if save:
  338. with open(results_file, 'r') as f: # create checkpoint
  339. ckpt = {'epoch': epoch,
  340. 'best_fitness': best_fitness,
  341. 'training_results': f.read(),
  342. 'model': ema.ema,
  343. 'optimizer': None if final_epoch else optimizer.state_dict(),
  344. 'wandb_id': wandb_run.id if wandb else None}
  345. # Save last, best and delete
  346. torch.save(ckpt, last)
  347. if best_fitness == fi:
  348. torch.save(ckpt, best)
  349. del ckpt
  350. # end epoch ----------------------------------------------------------------------------------------------------
  351. # end training
  352. if rank in [-1, 0]:
  353. # Strip optimizers
  354. final = best if best.exists() else last # final model
  355. for f in [last, best]:
  356. if f.exists():
  357. strip_optimizer(f) # strip optimizers
  358. if opt.bucket:
  359. os.system(f'gsutil cp {final} gs://{opt.bucket}/weights') # upload
  360. # Plots
  361. if plots:
  362. plot_results(save_dir=save_dir) # save as results.png
  363. if wandb:
  364. files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]]
  365. wandb.log({"Results": [wandb.Image(str(save_dir / f), caption=f) for f in files
  366. if (save_dir / f).exists()]})
  367. if opt.log_artifacts:
  368. wandb.log_artifact(artifact_or_path=str(final), type='model', name=save_dir.stem)
  369. # Test best.pt
  370. logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
  371. if opt.data.endswith('coco.yaml') and nc == 80: # if COCO
  372. for conf, iou, save_json in ([0.25, 0.45, False], [0.001, 0.65, True]): # speed, mAP tests
  373. results, _, _ = test.test(opt.data,
  374. batch_size=total_batch_size,
  375. imgsz=imgsz_test,
  376. conf_thres=conf,
  377. iou_thres=iou,
  378. model=attempt_load(final, device).half(),
  379. single_cls=opt.single_cls,
  380. dataloader=testloader,
  381. save_dir=save_dir,
  382. save_json=save_json,
  383. plots=False)
  384. else:
  385. dist.destroy_process_group()
  386. wandb.run.finish() if wandb and wandb.run else None
  387. torch.cuda.empty_cache()
  388. return results
  389. if __name__ == '__main__':
  390. parser = argparse.ArgumentParser()
  391. parser.add_argument('--weights', type=str, default='yolov5s.pt', help='initial weights path')
  392. parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
  393. parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path')
  394. parser.add_argument('--hyp', type=str, default='data/hyp.scratch.yaml', help='hyperparameters path')
  395. parser.add_argument('--epochs', type=int, default=300)
  396. parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs')
  397. parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes')
  398. parser.add_argument('--rect', action='store_true', help='rectangular training')
  399. parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
  400. parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
  401. parser.add_argument('--notest', action='store_true', help='only test final epoch')
  402. parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
  403. parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
  404. parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
  405. parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
  406. parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
  407. parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
  408. parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
  409. parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
  410. parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
  411. parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
  412. parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
  413. parser.add_argument('--log-imgs', type=int, default=16, help='number of images for W&B logging, max 100')
  414. parser.add_argument('--log-artifacts', action='store_true', help='log artifacts, i.e. final trained model')
  415. parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
  416. parser.add_argument('--project', default='runs/train', help='save to project/name')
  417. parser.add_argument('--name', default='exp', help='save to project/name')
  418. parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
  419. parser.add_argument('--quad', action='store_true', help='quad dataloader')
  420. parser.add_argument('--autobalance', action='store_true', help='autobalance')
  421. parser.add_argument('--linear-lr', action='store_true', help='linear LR')
  422. opt = parser.parse_args()
  423. # Set DDP variables
  424. opt.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
  425. opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1
  426. set_logging(opt.global_rank)
  427. if opt.global_rank in [-1, 0]:
  428. check_git_status()
  429. check_requirements()
  430. # Resume
  431. if opt.resume: # resume an interrupted run
  432. ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path
  433. assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
  434. apriori = opt.global_rank, opt.local_rank
  435. with open(Path(ckpt).parent.parent / 'opt.yaml') as f:
  436. opt = argparse.Namespace(**yaml.load(f, Loader=yaml.SafeLoader)) # replace
  437. opt.cfg, opt.weights, opt.resume, opt.batch_size, opt.global_rank, opt.local_rank = '', ckpt, True, opt.total_batch_size, *apriori # reinstate
  438. logger.info('Resuming training from %s' % ckpt)
  439. else:
  440. # opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml')
  441. opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files
  442. assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
  443. opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
  444. opt.name = 'evolve' if opt.evolve else opt.name
  445. opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok | opt.evolve) # increment run
  446. # DDP mode
  447. opt.total_batch_size = opt.batch_size
  448. device = select_device(opt.device, batch_size=opt.batch_size)
  449. if opt.local_rank != -1:
  450. assert torch.cuda.device_count() > opt.local_rank
  451. torch.cuda.set_device(opt.local_rank)
  452. device = torch.device('cuda', opt.local_rank)
  453. dist.init_process_group(backend='nccl', init_method='env://') # distributed backend
  454. assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count'
  455. opt.batch_size = opt.total_batch_size // opt.world_size
  456. # Hyperparameters
  457. with open(opt.hyp) as f:
  458. hyp = yaml.load(f, Loader=yaml.SafeLoader) # load hyps
  459. # Train
  460. logger.info(opt)
  461. try:
  462. import wandb
  463. except ImportError:
  464. wandb = None
  465. prefix = colorstr('wandb: ')
  466. logger.info(f"{prefix}Install Weights & Biases for YOLOv5 logging with 'pip install wandb' (recommended)")
  467. if not opt.evolve:
  468. tb_writer = None # init loggers
  469. if opt.global_rank in [-1, 0]:
  470. logger.info(f'Start Tensorboard with "tensorboard --logdir {opt.project}", view at http://localhost:6006/')
  471. tb_writer = SummaryWriter(opt.save_dir) # Tensorboard
  472. train(hyp, opt, device, tb_writer, wandb)
  473. # Evolve hyperparameters (optional)
  474. else:
  475. # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
  476. meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
  477. 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
  478. 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
  479. 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
  480. 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
  481. 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
  482. 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
  483. 'box': (1, 0.02, 0.2), # box loss gain
  484. 'cls': (1, 0.2, 4.0), # cls loss gain
  485. 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
  486. 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
  487. 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
  488. 'iou_t': (0, 0.1, 0.7), # IoU training threshold
  489. 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
  490. 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
  491. 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
  492. 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
  493. 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
  494. 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
  495. 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
  496. 'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
  497. 'scale': (1, 0.0, 0.9), # image scale (+/- gain)
  498. 'shear': (1, 0.0, 10.0), # image shear (+/- deg)
  499. 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
  500. 'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
  501. 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
  502. 'mosaic': (1, 0.0, 1.0), # image mixup (probability)
  503. 'mixup': (1, 0.0, 1.0)} # image mixup (probability)
  504. assert opt.local_rank == -1, 'DDP mode not implemented for --evolve'
  505. opt.notest, opt.nosave = True, True # only test/save final epoch
  506. # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
  507. yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml' # save best result here
  508. if opt.bucket:
  509. os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists
  510. for _ in range(300): # generations to evolve
  511. if Path('evolve.txt').exists(): # if evolve.txt exists: select best hyps and mutate
  512. # Select parent(s)
  513. parent = 'single' # parent selection method: 'single' or 'weighted'
  514. x = np.loadtxt('evolve.txt', ndmin=2)
  515. n = min(5, len(x)) # number of previous results to consider
  516. x = x[np.argsort(-fitness(x))][:n] # top n mutations
  517. w = fitness(x) - fitness(x).min() # weights
  518. if parent == 'single' or len(x) == 1:
  519. # x = x[random.randint(0, n - 1)] # random selection
  520. x = x[random.choices(range(n), weights=w)[0]] # weighted selection
  521. elif parent == 'weighted':
  522. x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
  523. # Mutate
  524. mp, s = 0.8, 0.2 # mutation probability, sigma
  525. npr = np.random
  526. npr.seed(int(time.time()))
  527. g = np.array([x[0] for x in meta.values()]) # gains 0-1
  528. ng = len(meta)
  529. v = np.ones(ng)
  530. while all(v == 1): # mutate until a change occurs (prevent duplicates)
  531. v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
  532. for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
  533. hyp[k] = float(x[i + 7] * v[i]) # mutate
  534. # Constrain to limits
  535. for k, v in meta.items():
  536. hyp[k] = max(hyp[k], v[1]) # lower limit
  537. hyp[k] = min(hyp[k], v[2]) # upper limit
  538. hyp[k] = round(hyp[k], 5) # significant digits
  539. # Train mutation
  540. results = train(hyp.copy(), opt, device, wandb=wandb)
  541. # Write mutation results
  542. print_mutation(hyp.copy(), results, yaml_file, opt.bucket)
  543. # Plot results
  544. plot_evolution(yaml_file)
  545. print(f'Hyperparameter evolution complete. Best results saved as: {yaml_file}\n'
  546. f'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}')
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...