Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

test.py 16 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
  1. import argparse
  2. import json
  3. import os
  4. from pathlib import Path
  5. from threading import Thread
  6. import numpy as np
  7. import torch
  8. import yaml
  9. from tqdm import tqdm
  10. from models.experimental import attempt_load
  11. from utils.datasets import create_dataloader
  12. from utils.general import coco80_to_coco91_class, check_dataset, check_file, check_img_size, check_requirements, \
  13. box_iou, non_max_suppression, scale_coords, xyxy2xywh, xywh2xyxy, set_logging, increment_path, colorstr
  14. from utils.metrics import ap_per_class, ConfusionMatrix
  15. from utils.plots import plot_images, output_to_target, plot_study_txt
  16. from utils.torch_utils import select_device, time_synchronized
  17. def test(data,
  18. weights=None,
  19. batch_size=32,
  20. imgsz=640,
  21. conf_thres=0.001,
  22. iou_thres=0.6, # for NMS
  23. save_json=False,
  24. single_cls=False,
  25. augment=False,
  26. verbose=False,
  27. model=None,
  28. dataloader=None,
  29. save_dir=Path(''), # for saving images
  30. save_txt=False, # for auto-labelling
  31. save_hybrid=False, # for hybrid auto-labelling
  32. save_conf=False, # save auto-label confidences
  33. plots=True,
  34. log_imgs=0, # number of logged images
  35. compute_loss=None):
  36. # Initialize/load model and set device
  37. training = model is not None
  38. if training: # called by train.py
  39. device = next(model.parameters()).device # get model device
  40. else: # called directly
  41. set_logging()
  42. device = select_device(opt.device, batch_size=batch_size)
  43. # Directories
  44. save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
  45. (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
  46. # Load model
  47. model = attempt_load(weights, map_location=device) # load FP32 model
  48. gs = max(int(model.stride.max()), 32) # grid size (max stride)
  49. imgsz = check_img_size(imgsz, s=gs) # check img_size
  50. # Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99
  51. # if device.type != 'cpu' and torch.cuda.device_count() > 1:
  52. # model = nn.DataParallel(model)
  53. # Half
  54. half = False # device.type != 'cpu' # half precision only supported on CUDA
  55. cuda = device.type != 'cpu'
  56. if half:
  57. model.half()
  58. # Configure
  59. model.eval()
  60. is_coco = data.endswith('coco.yaml') # is COCO dataset
  61. with open(data) as f:
  62. data = yaml.load(f, Loader=yaml.SafeLoader) # model dict
  63. check_dataset(data) # check
  64. nc = 1 if single_cls else int(data['nc']) # number of classes
  65. iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95
  66. niou = iouv.numel()
  67. # Logging
  68. log_imgs, wandb = min(log_imgs, 100), None # ceil
  69. try:
  70. import wandb # Weights & Biases
  71. except ImportError:
  72. log_imgs = 0
  73. # Dataloader
  74. if not training:
  75. if device.type != 'cpu':
  76. model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
  77. path = data['test'] if opt.task == 'test' else data['val'] # path to val/test images
  78. dataloader = create_dataloader(path, imgsz, batch_size, gs, opt, pad=0.5, rect=True,
  79. prefix=colorstr('test: ' if opt.task == 'test' else 'val: '))[0]
  80. seen = 0
  81. confusion_matrix = ConfusionMatrix(nc=nc)
  82. names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
  83. coco91class = coco80_to_coco91_class()
  84. s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
  85. p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
  86. loss = torch.zeros(3, device=device)
  87. jdict, stats, ap, ap_class, wandb_images = [], [], [], [], []
  88. for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
  89. img = img.to(device, non_blocking=True)
  90. img = img.half() if half else img.float() # uint8 to fp16/32
  91. img /= 255.0 # 0 - 255 to 0.0 - 1.0
  92. targets = targets.to(device)
  93. nb, _, height, width = img.shape # batch size, channels, height, width
  94. with torch.no_grad():
  95. # Run model
  96. t = time_synchronized()
  97. with torch.cuda.amp.autocast(enabled=cuda):
  98. out, train_out = model(img, augment=augment) # inference and training outputs
  99. t0 += time_synchronized() - t
  100. # Compute loss
  101. if compute_loss:
  102. loss += compute_loss([x.float() for x in train_out], targets)[1][:3] # box, obj, cls
  103. # Run NMS
  104. targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels
  105. lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
  106. t = time_synchronized()
  107. out = non_max_suppression(out, conf_thres=conf_thres, iou_thres=iou_thres, labels=lb, multi_label=True)
  108. t1 += time_synchronized() - t
  109. # Statistics per image
  110. for si, pred in enumerate(out):
  111. labels = targets[targets[:, 0] == si, 1:]
  112. nl = len(labels)
  113. tcls = labels[:, 0].tolist() if nl else [] # target class
  114. path = Path(paths[si])
  115. seen += 1
  116. if len(pred) == 0:
  117. if nl:
  118. stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
  119. continue
  120. # Predictions
  121. predn = pred.clone()
  122. scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0], shapes[si][1]) # native-space pred
  123. # Append to text file
  124. if save_txt:
  125. gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # normalization gain whwh
  126. for *xyxy, conf, cls in predn.tolist():
  127. xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
  128. line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
  129. with open(save_dir / 'labels' / (path.stem + '.txt'), 'a') as f:
  130. f.write(('%g ' * len(line)).rstrip() % line + '\n')
  131. # W&B logging
  132. if plots and len(wandb_images) < log_imgs:
  133. box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
  134. "class_id": int(cls),
  135. "box_caption": "%s %.3f" % (names[cls], conf),
  136. "scores": {"class_score": conf},
  137. "domain": "pixel"} for *xyxy, conf, cls in pred.tolist()]
  138. boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
  139. wandb_images.append(wandb.Image(img[si], boxes=boxes, caption=path.name))
  140. # Append to pycocotools JSON dictionary
  141. if save_json:
  142. # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
  143. image_id = int(path.stem) if path.stem.isnumeric() else path.stem
  144. box = xyxy2xywh(predn[:, :4]) # xywh
  145. box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
  146. for p, b in zip(pred.tolist(), box.tolist()):
  147. jdict.append({'image_id': image_id,
  148. 'category_id': coco91class[int(p[5])] if is_coco else int(p[5]),
  149. 'bbox': [round(x, 3) for x in b],
  150. 'score': round(p[4], 5)})
  151. # Assign all predictions as incorrect
  152. correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
  153. if nl:
  154. detected = [] # target indices
  155. tcls_tensor = labels[:, 0]
  156. # target boxes
  157. tbox = xywh2xyxy(labels[:, 1:5])
  158. scale_coords(img[si].shape[1:], tbox, shapes[si][0], shapes[si][1]) # native-space labels
  159. if plots:
  160. confusion_matrix.process_batch(predn, torch.cat((labels[:, 0:1], tbox), 1))
  161. # Per target class
  162. for cls in torch.unique(tcls_tensor):
  163. ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) # prediction indices
  164. pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) # target indices
  165. # Search for detections
  166. if pi.shape[0]:
  167. # Prediction to target ious
  168. ious, i = box_iou(predn[pi, :4], tbox[ti]).max(1) # best ious, indices
  169. # Append detections
  170. detected_set = set()
  171. for j in (ious > iouv[0]).nonzero(as_tuple=False):
  172. d = ti[i[j]] # detected target
  173. if d.item() not in detected_set:
  174. detected_set.add(d.item())
  175. detected.append(d)
  176. correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn
  177. if len(detected) == nl: # all targets already located in image
  178. break
  179. # Append statistics (correct, conf, pcls, tcls)
  180. stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
  181. # Plot images
  182. if plots and batch_i < 3:
  183. f = save_dir / f'test_batch{batch_i}_labels.jpg' # labels
  184. Thread(target=plot_images, args=(img, targets, paths, f, names), daemon=True).start()
  185. f = save_dir / f'test_batch{batch_i}_pred.jpg' # predictions
  186. Thread(target=plot_images, args=(img, output_to_target(out), paths, f, names), daemon=True).start()
  187. # Compute statistics
  188. stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
  189. if len(stats) and stats[0].any():
  190. p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
  191. ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
  192. mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
  193. nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
  194. else:
  195. nt = torch.zeros(1)
  196. # Print results
  197. pf = '%20s' + '%12.3g' * 6 # print format
  198. print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
  199. # Print results per class
  200. if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
  201. for i, c in enumerate(ap_class):
  202. print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
  203. # Print speeds
  204. t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple
  205. if not training:
  206. print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)
  207. # Plots
  208. if plots:
  209. confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
  210. if wandb and wandb.run:
  211. val_batches = [wandb.Image(str(f), caption=f.name) for f in sorted(save_dir.glob('test*.jpg'))]
  212. wandb.log({"Images": wandb_images, "Validation": val_batches}, commit=False)
  213. # Save JSON
  214. if save_json and len(jdict):
  215. w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
  216. anno_json = '../coco/annotations/instances_val2017.json' # annotations json
  217. pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
  218. print('\nEvaluating pycocotools mAP... saving %s...' % pred_json)
  219. with open(pred_json, 'w') as f:
  220. json.dump(jdict, f)
  221. try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
  222. from pycocotools.coco import COCO
  223. from pycocotools.cocoeval import COCOeval
  224. anno = COCO(anno_json) # init annotations api
  225. pred = anno.loadRes(pred_json) # init predictions api
  226. eval = COCOeval(anno, pred, 'bbox')
  227. if is_coco:
  228. eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] # image IDs to evaluate
  229. eval.evaluate()
  230. eval.accumulate()
  231. eval.summarize()
  232. map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
  233. except Exception as e:
  234. print(f'pycocotools unable to run: {e}')
  235. # Return results
  236. model.float() # for training
  237. if not training:
  238. s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
  239. print(f"Results saved to {save_dir}{s}")
  240. maps = np.zeros(nc) + map
  241. for i, c in enumerate(ap_class):
  242. maps[c] = ap[i]
  243. return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
  244. if __name__ == '__main__':
  245. parser = argparse.ArgumentParser(prog='test.py')
  246. parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
  247. parser.add_argument('--data', type=str, default='data/coco128.yaml', help='*.data path')
  248. parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
  249. parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
  250. parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold')
  251. parser.add_argument('--iou-thres', type=float, default=0.6, help='IOU threshold for NMS')
  252. parser.add_argument('--task', default='val', help="'val', 'test', 'study'")
  253. parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
  254. parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
  255. parser.add_argument('--augment', action='store_true', help='augmented inference')
  256. parser.add_argument('--verbose', action='store_true', help='report mAP by class')
  257. parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
  258. parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
  259. parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
  260. parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
  261. parser.add_argument('--project', default='runs/test', help='save to project/name')
  262. parser.add_argument('--name', default='exp', help='save to project/name')
  263. parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
  264. opt = parser.parse_args()
  265. opt.save_json |= opt.data.endswith('coco.yaml')
  266. opt.data = check_file(opt.data) # check file
  267. print(opt)
  268. check_requirements()
  269. if opt.task in ['val', 'test']: # run normally
  270. test(opt.data,
  271. opt.weights,
  272. opt.batch_size,
  273. opt.img_size,
  274. opt.conf_thres,
  275. opt.iou_thres,
  276. opt.save_json,
  277. opt.single_cls,
  278. opt.augment,
  279. opt.verbose,
  280. save_txt=opt.save_txt | opt.save_hybrid,
  281. save_hybrid=opt.save_hybrid,
  282. save_conf=opt.save_conf,
  283. )
  284. elif opt.task == 'speed': # speed benchmarks
  285. for w in opt.weights:
  286. test(opt.data, w, opt.batch_size, opt.img_size, 0.25, 0.45, save_json=False, plots=False)
  287. elif opt.task == 'study': # run over a range of settings and save/plot
  288. # python test.py --task study --data coco.yaml --iou 0.7 --weights yolov5s.pt yolov5m.pt yolov5l.pt yolov5x.pt
  289. x = list(range(256, 1536 + 128, 128)) # x axis (image sizes)
  290. for w in opt.weights:
  291. f = f'study_{Path(opt.data).stem}_{Path(w).stem}.txt' # filename to save to
  292. y = [] # y axis
  293. for i in x: # img-size
  294. print(f'\nRunning {f} point {i}...')
  295. r, _, t = test(opt.data, w, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json,
  296. plots=False)
  297. y.append(r + t) # results and times
  298. np.savetxt(f, y, fmt='%10.4g') # save
  299. os.system('zip -r study.zip study_*.txt')
  300. plot_study_txt(x=x) # plot
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...