1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
|
- # Model validation metrics
- from pathlib import Path
- import matplotlib.pyplot as plt
- import numpy as np
- import torch
- from . import general
- def fitness(x):
- # Model fitness as a weighted combination of metrics
- w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
- return (x[:, :4] * w).sum(1)
- def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names=()):
- """ Compute the average precision, given the recall and precision curves.
- Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
- # Arguments
- tp: True positives (nparray, nx1 or nx10).
- conf: Objectness value from 0-1 (nparray).
- pred_cls: Predicted object classes (nparray).
- target_cls: True object classes (nparray).
- plot: Plot precision-recall curve at mAP@0.5
- save_dir: Plot save directory
- # Returns
- The average precision as computed in py-faster-rcnn.
- """
- # Sort by objectness
- i = np.argsort(-conf)
- tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
- # Find unique classes
- unique_classes = np.unique(target_cls)
- nc = unique_classes.shape[0] # number of classes, number of detections
- # Create Precision-Recall curve and compute AP for each class
- px, py = np.linspace(0, 1, 1000), [] # for plotting
- ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
- for ci, c in enumerate(unique_classes):
- i = pred_cls == c
- n_l = (target_cls == c).sum() # number of labels
- n_p = i.sum() # number of predictions
- if n_p == 0 or n_l == 0:
- continue
- else:
- # Accumulate FPs and TPs
- fpc = (1 - tp[i]).cumsum(0)
- tpc = tp[i].cumsum(0)
- # Recall
- recall = tpc / (n_l + 1e-16) # recall curve
- r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases
- # Precision
- precision = tpc / (tpc + fpc) # precision curve
- p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score
- # AP from recall-precision curve
- for j in range(tp.shape[1]):
- ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
- if plot and j == 0:
- py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5
- # Compute F1 (harmonic mean of precision and recall)
- f1 = 2 * p * r / (p + r + 1e-16)
- if plot:
- plot_pr_curve(px, py, ap, Path(save_dir) / 'PR_curve.png', names)
- plot_mc_curve(px, f1, Path(save_dir) / 'F1_curve.png', names, ylabel='F1')
- plot_mc_curve(px, p, Path(save_dir) / 'P_curve.png', names, ylabel='Precision')
- plot_mc_curve(px, r, Path(save_dir) / 'R_curve.png', names, ylabel='Recall')
- i = f1.mean(0).argmax() # max F1 index
- return p[:, i], r[:, i], ap, f1[:, i], unique_classes.astype('int32')
- def compute_ap(recall, precision):
- """ Compute the average precision, given the recall and precision curves
- # Arguments
- recall: The recall curve (list)
- precision: The precision curve (list)
- # Returns
- Average precision, precision curve, recall curve
- """
- # Append sentinel values to beginning and end
- mrec = np.concatenate(([0.], recall, [recall[-1] + 0.01]))
- mpre = np.concatenate(([1.], precision, [0.]))
- # Compute the precision envelope
- mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
- # Integrate area under curve
- method = 'interp' # methods: 'continuous', 'interp'
- if method == 'interp':
- x = np.linspace(0, 1, 101) # 101-point interp (COCO)
- ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
- else: # 'continuous'
- i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes
- ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
- return ap, mpre, mrec
- class ConfusionMatrix:
- # Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
- def __init__(self, nc, conf=0.25, iou_thres=0.45):
- self.matrix = np.zeros((nc + 1, nc + 1))
- self.nc = nc # number of classes
- self.conf = conf
- self.iou_thres = iou_thres
- def process_batch(self, detections, labels):
- """
- Return intersection-over-union (Jaccard index) of boxes.
- Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
- Arguments:
- detections (Array[N, 6]), x1, y1, x2, y2, conf, class
- labels (Array[M, 5]), class, x1, y1, x2, y2
- Returns:
- None, updates confusion matrix accordingly
- """
- detections = detections[detections[:, 4] > self.conf]
- gt_classes = labels[:, 0].int()
- detection_classes = detections[:, 5].int()
- iou = general.box_iou(labels[:, 1:], detections[:, :4])
- x = torch.where(iou > self.iou_thres)
- if x[0].shape[0]:
- matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
- if x[0].shape[0] > 1:
- matches = matches[matches[:, 2].argsort()[::-1]]
- matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
- matches = matches[matches[:, 2].argsort()[::-1]]
- matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
- else:
- matches = np.zeros((0, 3))
- n = matches.shape[0] > 0
- m0, m1, _ = matches.transpose().astype(np.int16)
- for i, gc in enumerate(gt_classes):
- j = m0 == i
- if n and sum(j) == 1:
- self.matrix[detection_classes[m1[j]], gc] += 1 # correct
- else:
- self.matrix[self.nc, gc] += 1 # background FP
- if n:
- for i, dc in enumerate(detection_classes):
- if not any(m1 == i):
- self.matrix[dc, self.nc] += 1 # background FN
- def matrix(self):
- return self.matrix
- def plot(self, save_dir='', names=()):
- try:
- import seaborn as sn
- array = self.matrix / (self.matrix.sum(0).reshape(1, self.nc + 1) + 1E-6) # normalize
- array[array < 0.005] = np.nan # don't annotate (would appear as 0.00)
- fig = plt.figure(figsize=(12, 9), tight_layout=True)
- sn.set(font_scale=1.0 if self.nc < 50 else 0.8) # for label size
- labels = (0 < len(names) < 99) and len(names) == self.nc # apply names to ticklabels
- sn.heatmap(array, annot=self.nc < 30, annot_kws={"size": 8}, cmap='Blues', fmt='.2f', square=True,
- xticklabels=names + ['background FP'] if labels else "auto",
- yticklabels=names + ['background FN'] if labels else "auto").set_facecolor((1, 1, 1))
- fig.axes[0].set_xlabel('True')
- fig.axes[0].set_ylabel('Predicted')
- fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
- except Exception as e:
- pass
- def print(self):
- for i in range(self.nc + 1):
- print(' '.join(map(str, self.matrix[i])))
- # Plots ----------------------------------------------------------------------------------------------------------------
- def plot_pr_curve(px, py, ap, save_dir='pr_curve.png', names=()):
- # Precision-recall curve
- fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
- py = np.stack(py, axis=1)
- if 0 < len(names) < 21: # display per-class legend if < 21 classes
- for i, y in enumerate(py.T):
- ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}') # plot(recall, precision)
- else:
- ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision)
- ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean())
- ax.set_xlabel('Recall')
- ax.set_ylabel('Precision')
- ax.set_xlim(0, 1)
- ax.set_ylim(0, 1)
- plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
- fig.savefig(Path(save_dir), dpi=250)
- def plot_mc_curve(px, py, save_dir='mc_curve.png', names=(), xlabel='Confidence', ylabel='Metric'):
- # Metric-confidence curve
- fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
- if 0 < len(names) < 21: # display per-class legend if < 21 classes
- for i, y in enumerate(py):
- ax.plot(px, y, linewidth=1, label=f'{names[i]}') # plot(confidence, metric)
- else:
- ax.plot(px, py.T, linewidth=1, color='grey') # plot(confidence, metric)
- y = py.mean(0)
- ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}')
- ax.set_xlabel(xlabel)
- ax.set_ylabel(ylabel)
- ax.set_xlim(0, 1)
- ax.set_ylim(0, 1)
- plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
- fig.savefig(Path(save_dir), dpi=250)
|