1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
|
- # PyTorch utils
- import logging
- import math
- import os
- import time
- from contextlib import contextmanager
- from copy import deepcopy
- import torch
- import torch.backends.cudnn as cudnn
- import torch.nn as nn
- import torch.nn.functional as F
- import torchvision
- logger = logging.getLogger(__name__)
- @contextmanager
- def torch_distributed_zero_first(local_rank: int):
- """
- Decorator to make all processes in distributed training wait for each local_master to do something.
- """
- if local_rank not in [-1, 0]:
- torch.distributed.barrier()
- yield
- if local_rank == 0:
- torch.distributed.barrier()
- def init_torch_seeds(seed=0):
- # Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
- torch.manual_seed(seed)
- if seed == 0: # slower, more reproducible
- cudnn.deterministic = True
- cudnn.benchmark = False
- else: # faster, less reproducible
- cudnn.deterministic = False
- cudnn.benchmark = True
- def select_device(device='', batch_size=None):
- # device = 'cpu' or '0' or '0,1,2,3'
- cpu_request = device.lower() == 'cpu'
- if device and not cpu_request: # if device requested other than 'cpu'
- os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable
- assert torch.cuda.is_available(), 'CUDA unavailable, invalid device %s requested' % device # check availablity
- cuda = False if cpu_request else torch.cuda.is_available()
- if cuda:
- c = 1024 ** 2 # bytes to MB
- ng = torch.cuda.device_count()
- if ng > 1 and batch_size: # check that batch_size is compatible with device_count
- assert batch_size % ng == 0, 'batch-size %g not multiple of GPU count %g' % (batch_size, ng)
- x = [torch.cuda.get_device_properties(i) for i in range(ng)]
- s = f'Using torch {torch.__version__} '
- for i in range(0, ng):
- if i == 1:
- s = ' ' * len(s)
- logger.info("%sCUDA:%g (%s, %dMB)" % (s, i, x[i].name, x[i].total_memory / c))
- else:
- logger.info(f'Using torch {torch.__version__} CPU')
- logger.info('') # skip a line
- return torch.device('cuda:0' if cuda else 'cpu')
- def time_synchronized():
- torch.cuda.synchronize() if torch.cuda.is_available() else None
- return time.time()
- def is_parallel(model):
- return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
- def intersect_dicts(da, db, exclude=()):
- # Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
- return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}
- def initialize_weights(model):
- for m in model.modules():
- t = type(m)
- if t is nn.Conv2d:
- pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
- elif t is nn.BatchNorm2d:
- m.eps = 1e-3
- m.momentum = 0.03
- elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
- m.inplace = True
- def find_modules(model, mclass=nn.Conv2d):
- # Finds layer indices matching module class 'mclass'
- return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
- def sparsity(model):
- # Return global model sparsity
- a, b = 0., 0.
- for p in model.parameters():
- a += p.numel()
- b += (p == 0).sum()
- return b / a
- def prune(model, amount=0.3):
- # Prune model to requested global sparsity
- import torch.nn.utils.prune as prune
- print('Pruning model... ', end='')
- for name, m in model.named_modules():
- if isinstance(m, nn.Conv2d):
- prune.l1_unstructured(m, name='weight', amount=amount) # prune
- prune.remove(m, 'weight') # make permanent
- print(' %.3g global sparsity' % sparsity(model))
- def fuse_conv_and_bn(conv, bn):
- # Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
- fusedconv = nn.Conv2d(conv.in_channels,
- conv.out_channels,
- kernel_size=conv.kernel_size,
- stride=conv.stride,
- padding=conv.padding,
- groups=conv.groups,
- bias=True).requires_grad_(False).to(conv.weight.device)
- # prepare filters
- w_conv = conv.weight.clone().view(conv.out_channels, -1)
- w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
- fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.size()))
- # prepare spatial bias
- b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
- b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
- fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
- return fusedconv
- def model_info(model, verbose=False, img_size=640):
- # Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320]
- n_p = sum(x.numel() for x in model.parameters()) # number parameters
- n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
- if verbose:
- print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
- for i, (name, p) in enumerate(model.named_parameters()):
- name = name.replace('module_list.', '')
- print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
- (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
- try: # FLOPS
- from thop import profile
- stride = int(model.stride.max())
- img = torch.zeros((1, 3, stride, stride), device=next(model.parameters()).device) # input
- flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2 # stride FLOPS
- img_size = img_size if isinstance(img_size, list) else [img_size, img_size] # expand if int/float
- fs = ', %.1f GFLOPS' % (flops * img_size[0] / stride * img_size[1] / stride) # 640x640 FLOPS
- except (ImportError, Exception):
- fs = ''
- logger.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")
- def load_classifier(name='resnet101', n=2):
- # Loads a pretrained model reshaped to n-class output
- model = torchvision.models.__dict__[name](pretrained=True)
- # ResNet model properties
- # input_size = [3, 224, 224]
- # input_space = 'RGB'
- # input_range = [0, 1]
- # mean = [0.485, 0.456, 0.406]
- # std = [0.229, 0.224, 0.225]
- # Reshape output to n classes
- filters = model.fc.weight.shape[1]
- model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True)
- model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True)
- model.fc.out_features = n
- return model
- def scale_img(img, ratio=1.0, same_shape=False): # img(16,3,256,416), r=ratio
- # scales img(bs,3,y,x) by ratio
- if ratio == 1.0:
- return img
- else:
- h, w = img.shape[2:]
- s = (int(h * ratio), int(w * ratio)) # new size
- img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
- if not same_shape: # pad/crop img
- gs = 32 # (pixels) grid size
- h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)]
- return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
- def copy_attr(a, b, include=(), exclude=()):
- # Copy attributes from b to a, options to only include [...] and to exclude [...]
- for k, v in b.__dict__.items():
- if (len(include) and k not in include) or k.startswith('_') or k in exclude:
- continue
- else:
- setattr(a, k, v)
- class ModelEMA:
- """ Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models
- Keep a moving average of everything in the model state_dict (parameters and buffers).
- This is intended to allow functionality like
- https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
- A smoothed version of the weights is necessary for some training schemes to perform well.
- This class is sensitive where it is initialized in the sequence of model init,
- GPU assignment and distributed training wrappers.
- """
- def __init__(self, model, decay=0.9999, updates=0):
- # Create EMA
- self.ema = deepcopy(model.module if is_parallel(model) else model).eval() # FP32 EMA
- # if next(model.parameters()).device.type != 'cpu':
- # self.ema.half() # FP16 EMA
- self.updates = updates # number of EMA updates
- self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs)
- for p in self.ema.parameters():
- p.requires_grad_(False)
- def update(self, model):
- # Update EMA parameters
- with torch.no_grad():
- self.updates += 1
- d = self.decay(self.updates)
- msd = model.module.state_dict() if is_parallel(model) else model.state_dict() # model state_dict
- for k, v in self.ema.state_dict().items():
- if v.dtype.is_floating_point:
- v *= d
- v += (1. - d) * msd[k].detach()
- def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
- # Update EMA attributes
- copy_attr(self.ema, model, include, exclude)
|