Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

datasets.py 37 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
  1. # Dataset utils and dataloaders
  2. import glob
  3. import logging
  4. import math
  5. import os
  6. import random
  7. import shutil
  8. import time
  9. from itertools import repeat
  10. from multiprocessing.pool import ThreadPool
  11. from pathlib import Path
  12. from threading import Thread
  13. import cv2
  14. import numpy as np
  15. import torch
  16. from PIL import Image, ExifTags
  17. from torch.utils.data import Dataset
  18. from tqdm import tqdm
  19. from utils.general import xyxy2xywh, xywh2xyxy
  20. from utils.torch_utils import torch_distributed_zero_first
  21. # Parameters
  22. help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
  23. img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng'] # acceptable image suffixes
  24. vid_formats = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv'] # acceptable video suffixes
  25. logger = logging.getLogger(__name__)
  26. # Get orientation exif tag
  27. for orientation in ExifTags.TAGS.keys():
  28. if ExifTags.TAGS[orientation] == 'Orientation':
  29. break
  30. def get_hash(files):
  31. # Returns a single hash value of a list of files
  32. return sum(os.path.getsize(f) for f in files if os.path.isfile(f))
  33. def exif_size(img):
  34. # Returns exif-corrected PIL size
  35. s = img.size # (width, height)
  36. try:
  37. rotation = dict(img._getexif().items())[orientation]
  38. if rotation == 6: # rotation 270
  39. s = (s[1], s[0])
  40. elif rotation == 8: # rotation 90
  41. s = (s[1], s[0])
  42. except:
  43. pass
  44. return s
  45. def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=False, cache=False, pad=0.0, rect=False,
  46. rank=-1, world_size=1, workers=8, image_weights=False):
  47. # Make sure only the first process in DDP process the dataset first, and the following others can use the cache
  48. with torch_distributed_zero_first(rank):
  49. dataset = LoadImagesAndLabels(path, imgsz, batch_size,
  50. augment=augment, # augment images
  51. hyp=hyp, # augmentation hyperparameters
  52. rect=rect, # rectangular training
  53. cache_images=cache,
  54. single_cls=opt.single_cls,
  55. stride=int(stride),
  56. pad=pad,
  57. rank=rank,
  58. image_weights=image_weights)
  59. batch_size = min(batch_size, len(dataset))
  60. nw = min([os.cpu_count() // world_size, batch_size if batch_size > 1 else 0, workers]) # number of workers
  61. sampler = torch.utils.data.distributed.DistributedSampler(dataset) if rank != -1 else None
  62. loader = torch.utils.data.DataLoader if image_weights else InfiniteDataLoader
  63. # Use torch.utils.data.DataLoader() if dataset.properties will update during training else InfiniteDataLoader()
  64. dataloader = loader(dataset,
  65. batch_size=batch_size,
  66. num_workers=nw,
  67. sampler=sampler,
  68. pin_memory=True,
  69. collate_fn=LoadImagesAndLabels.collate_fn)
  70. return dataloader, dataset
  71. class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader):
  72. """ Dataloader that reuses workers
  73. Uses same syntax as vanilla DataLoader
  74. """
  75. def __init__(self, *args, **kwargs):
  76. super().__init__(*args, **kwargs)
  77. object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
  78. self.iterator = super().__iter__()
  79. def __len__(self):
  80. return len(self.batch_sampler.sampler)
  81. def __iter__(self):
  82. for i in range(len(self)):
  83. yield next(self.iterator)
  84. class _RepeatSampler(object):
  85. """ Sampler that repeats forever
  86. Args:
  87. sampler (Sampler)
  88. """
  89. def __init__(self, sampler):
  90. self.sampler = sampler
  91. def __iter__(self):
  92. while True:
  93. yield from iter(self.sampler)
  94. class LoadImages: # for inference
  95. def __init__(self, path, img_size=640):
  96. p = str(Path(path)) # os-agnostic
  97. p = os.path.abspath(p) # absolute path
  98. if '*' in p:
  99. files = sorted(glob.glob(p, recursive=True)) # glob
  100. elif os.path.isdir(p):
  101. files = sorted(glob.glob(os.path.join(p, '*.*'))) # dir
  102. elif os.path.isfile(p):
  103. files = [p] # files
  104. else:
  105. raise Exception('ERROR: %s does not exist' % p)
  106. images = [x for x in files if x.split('.')[-1].lower() in img_formats]
  107. videos = [x for x in files if x.split('.')[-1].lower() in vid_formats]
  108. ni, nv = len(images), len(videos)
  109. self.img_size = img_size
  110. self.files = images + videos
  111. self.nf = ni + nv # number of files
  112. self.video_flag = [False] * ni + [True] * nv
  113. self.mode = 'images'
  114. if any(videos):
  115. self.new_video(videos[0]) # new video
  116. else:
  117. self.cap = None
  118. assert self.nf > 0, 'No images or videos found in %s. Supported formats are:\nimages: %s\nvideos: %s' % \
  119. (p, img_formats, vid_formats)
  120. def __iter__(self):
  121. self.count = 0
  122. return self
  123. def __next__(self):
  124. if self.count == self.nf:
  125. raise StopIteration
  126. path = self.files[self.count]
  127. if self.video_flag[self.count]:
  128. # Read video
  129. self.mode = 'video'
  130. ret_val, img0 = self.cap.read()
  131. if not ret_val:
  132. self.count += 1
  133. self.cap.release()
  134. if self.count == self.nf: # last video
  135. raise StopIteration
  136. else:
  137. path = self.files[self.count]
  138. self.new_video(path)
  139. ret_val, img0 = self.cap.read()
  140. self.frame += 1
  141. print('video %g/%g (%g/%g) %s: ' % (self.count + 1, self.nf, self.frame, self.nframes, path), end='')
  142. else:
  143. # Read image
  144. self.count += 1
  145. img0 = cv2.imread(path) # BGR
  146. assert img0 is not None, 'Image Not Found ' + path
  147. print('image %g/%g %s: ' % (self.count, self.nf, path), end='')
  148. # Padded resize
  149. img = letterbox(img0, new_shape=self.img_size)[0]
  150. # Convert
  151. img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
  152. img = np.ascontiguousarray(img)
  153. return path, img, img0, self.cap
  154. def new_video(self, path):
  155. self.frame = 0
  156. self.cap = cv2.VideoCapture(path)
  157. self.nframes = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
  158. def __len__(self):
  159. return self.nf # number of files
  160. class LoadWebcam: # for inference
  161. def __init__(self, pipe='0', img_size=640):
  162. self.img_size = img_size
  163. if pipe.isnumeric():
  164. pipe = eval(pipe) # local camera
  165. # pipe = 'rtsp://192.168.1.64/1' # IP camera
  166. # pipe = 'rtsp://username:password@192.168.1.64/1' # IP camera with login
  167. # pipe = 'http://wmccpinetop.axiscam.net/mjpg/video.mjpg' # IP golf camera
  168. self.pipe = pipe
  169. self.cap = cv2.VideoCapture(pipe) # video capture object
  170. self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3) # set buffer size
  171. def __iter__(self):
  172. self.count = -1
  173. return self
  174. def __next__(self):
  175. self.count += 1
  176. if cv2.waitKey(1) == ord('q'): # q to quit
  177. self.cap.release()
  178. cv2.destroyAllWindows()
  179. raise StopIteration
  180. # Read frame
  181. if self.pipe == 0: # local camera
  182. ret_val, img0 = self.cap.read()
  183. img0 = cv2.flip(img0, 1) # flip left-right
  184. else: # IP camera
  185. n = 0
  186. while True:
  187. n += 1
  188. self.cap.grab()
  189. if n % 30 == 0: # skip frames
  190. ret_val, img0 = self.cap.retrieve()
  191. if ret_val:
  192. break
  193. # Print
  194. assert ret_val, 'Camera Error %s' % self.pipe
  195. img_path = 'webcam.jpg'
  196. print('webcam %g: ' % self.count, end='')
  197. # Padded resize
  198. img = letterbox(img0, new_shape=self.img_size)[0]
  199. # Convert
  200. img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
  201. img = np.ascontiguousarray(img)
  202. return img_path, img, img0, None
  203. def __len__(self):
  204. return 0
  205. class LoadStreams: # multiple IP or RTSP cameras
  206. def __init__(self, sources='streams.txt', img_size=640):
  207. self.mode = 'images'
  208. self.img_size = img_size
  209. if os.path.isfile(sources):
  210. with open(sources, 'r') as f:
  211. sources = [x.strip() for x in f.read().strip().splitlines() if len(x.strip())]
  212. else:
  213. sources = [sources]
  214. n = len(sources)
  215. self.imgs = [None] * n
  216. self.sources = sources
  217. for i, s in enumerate(sources):
  218. # Start the thread to read frames from the video stream
  219. print('%g/%g: %s... ' % (i + 1, n, s), end='')
  220. cap = cv2.VideoCapture(eval(s) if s.isnumeric() else s)
  221. assert cap.isOpened(), 'Failed to open %s' % s
  222. w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
  223. h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
  224. fps = cap.get(cv2.CAP_PROP_FPS) % 100
  225. _, self.imgs[i] = cap.read() # guarantee first frame
  226. thread = Thread(target=self.update, args=([i, cap]), daemon=True)
  227. print(' success (%gx%g at %.2f FPS).' % (w, h, fps))
  228. thread.start()
  229. print('') # newline
  230. # check for common shapes
  231. s = np.stack([letterbox(x, new_shape=self.img_size)[0].shape for x in self.imgs], 0) # inference shapes
  232. self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal
  233. if not self.rect:
  234. print('WARNING: Different stream shapes detected. For optimal performance supply similarly-shaped streams.')
  235. def update(self, index, cap):
  236. # Read next stream frame in a daemon thread
  237. n = 0
  238. while cap.isOpened():
  239. n += 1
  240. # _, self.imgs[index] = cap.read()
  241. cap.grab()
  242. if n == 4: # read every 4th frame
  243. _, self.imgs[index] = cap.retrieve()
  244. n = 0
  245. time.sleep(0.01) # wait time
  246. def __iter__(self):
  247. self.count = -1
  248. return self
  249. def __next__(self):
  250. self.count += 1
  251. img0 = self.imgs.copy()
  252. if cv2.waitKey(1) == ord('q'): # q to quit
  253. cv2.destroyAllWindows()
  254. raise StopIteration
  255. # Letterbox
  256. img = [letterbox(x, new_shape=self.img_size, auto=self.rect)[0] for x in img0]
  257. # Stack
  258. img = np.stack(img, 0)
  259. # Convert
  260. img = img[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB, to bsx3x416x416
  261. img = np.ascontiguousarray(img)
  262. return self.sources, img, img0, None
  263. def __len__(self):
  264. return 0 # 1E12 frames = 32 streams at 30 FPS for 30 years
  265. def img2label_paths(img_paths):
  266. # Define label paths as a function of image paths
  267. sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep # /images/, /labels/ substrings
  268. return [x.replace(sa, sb, 1).replace('.' + x.split('.')[-1], '.txt') for x in img_paths]
  269. class LoadImagesAndLabels(Dataset): # for training/testing
  270. def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
  271. cache_images=False, single_cls=False, stride=32, pad=0.0, rank=-1):
  272. self.img_size = img_size
  273. self.augment = augment
  274. self.hyp = hyp
  275. self.image_weights = image_weights
  276. self.rect = False if image_weights else rect
  277. self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)
  278. self.mosaic_border = [-img_size // 2, -img_size // 2]
  279. self.stride = stride
  280. try:
  281. f = [] # image files
  282. for p in path if isinstance(path, list) else [path]:
  283. p = Path(p) # os-agnostic
  284. if p.is_dir(): # dir
  285. f += glob.glob(str(p / '**' / '*.*'), recursive=True)
  286. elif p.is_file(): # file
  287. with open(p, 'r') as t:
  288. t = t.read().strip().splitlines()
  289. parent = str(p.parent) + os.sep
  290. f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path
  291. else:
  292. raise Exception('%s does not exist' % p)
  293. self.img_files = sorted([x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in img_formats])
  294. assert self.img_files, 'No images found'
  295. except Exception as e:
  296. raise Exception('Error loading data from %s: %s\nSee %s' % (path, e, help_url))
  297. # Check cache
  298. self.label_files = img2label_paths(self.img_files) # labels
  299. cache_path = Path(self.label_files[0]).parent.with_suffix('.cache') # cached labels
  300. if cache_path.is_file():
  301. cache = torch.load(cache_path) # load
  302. if cache['hash'] != get_hash(self.label_files + self.img_files) or 'results' not in cache: # changed
  303. cache = self.cache_labels(cache_path) # re-cache
  304. else:
  305. cache = self.cache_labels(cache_path) # cache
  306. # Display cache
  307. [nf, nm, ne, nc, n] = cache.pop('results') # found, missing, empty, corrupted, total
  308. desc = f"Scanning '{cache_path}' for images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupted"
  309. tqdm(None, desc=desc, total=n, initial=n)
  310. assert nf > 0 or not augment, f'No labels found in {cache_path}. Can not train without labels. See {help_url}'
  311. # Read cache
  312. cache.pop('hash') # remove hash
  313. labels, shapes = zip(*cache.values())
  314. self.labels = list(labels)
  315. self.shapes = np.array(shapes, dtype=np.float64)
  316. self.img_files = list(cache.keys()) # update
  317. self.label_files = img2label_paths(cache.keys()) # update
  318. if single_cls:
  319. for x in self.labels:
  320. x[:, 0] = 0
  321. n = len(shapes) # number of images
  322. bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index
  323. nb = bi[-1] + 1 # number of batches
  324. self.batch = bi # batch index of image
  325. self.n = n
  326. self.indices = range(n)
  327. # Rectangular Training
  328. if self.rect:
  329. # Sort by aspect ratio
  330. s = self.shapes # wh
  331. ar = s[:, 1] / s[:, 0] # aspect ratio
  332. irect = ar.argsort()
  333. self.img_files = [self.img_files[i] for i in irect]
  334. self.label_files = [self.label_files[i] for i in irect]
  335. self.labels = [self.labels[i] for i in irect]
  336. self.shapes = s[irect] # wh
  337. ar = ar[irect]
  338. # Set training image shapes
  339. shapes = [[1, 1]] * nb
  340. for i in range(nb):
  341. ari = ar[bi == i]
  342. mini, maxi = ari.min(), ari.max()
  343. if maxi < 1:
  344. shapes[i] = [maxi, 1]
  345. elif mini > 1:
  346. shapes[i] = [1, 1 / mini]
  347. self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride
  348. # Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
  349. self.imgs = [None] * n
  350. if cache_images:
  351. gb = 0 # Gigabytes of cached images
  352. self.img_hw0, self.img_hw = [None] * n, [None] * n
  353. results = ThreadPool(8).imap(lambda x: load_image(*x), zip(repeat(self), range(n))) # 8 threads
  354. pbar = tqdm(enumerate(results), total=n)
  355. for i, x in pbar:
  356. self.imgs[i], self.img_hw0[i], self.img_hw[i] = x # img, hw_original, hw_resized = load_image(self, i)
  357. gb += self.imgs[i].nbytes
  358. pbar.desc = 'Caching images (%.1fGB)' % (gb / 1E9)
  359. def cache_labels(self, path=Path('./labels.cache')):
  360. # Cache dataset labels, check images and read shapes
  361. x = {} # dict
  362. nm, nf, ne, nc = 0, 0, 0, 0 # number missing, found, empty, duplicate
  363. pbar = tqdm(zip(self.img_files, self.label_files), desc='Scanning images', total=len(self.img_files))
  364. for i, (im_file, lb_file) in enumerate(pbar):
  365. try:
  366. # verify images
  367. im = Image.open(im_file)
  368. im.verify() # PIL verify
  369. shape = exif_size(im) # image size
  370. assert (shape[0] > 9) & (shape[1] > 9), 'image size <10 pixels'
  371. # verify labels
  372. if os.path.isfile(lb_file):
  373. nf += 1 # label found
  374. with open(lb_file, 'r') as f:
  375. l = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels
  376. if len(l):
  377. assert l.shape[1] == 5, 'labels require 5 columns each'
  378. assert (l >= 0).all(), 'negative labels'
  379. assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels'
  380. assert np.unique(l, axis=0).shape[0] == l.shape[0], 'duplicate labels'
  381. else:
  382. ne += 1 # label empty
  383. l = np.zeros((0, 5), dtype=np.float32)
  384. else:
  385. nm += 1 # label missing
  386. l = np.zeros((0, 5), dtype=np.float32)
  387. x[im_file] = [l, shape]
  388. except Exception as e:
  389. nc += 1
  390. print('WARNING: Ignoring corrupted image and/or label %s: %s' % (im_file, e))
  391. pbar.desc = f"Scanning '{path.parent / path.stem}' for images and labels... " \
  392. f"{nf} found, {nm} missing, {ne} empty, {nc} corrupted"
  393. if nf == 0:
  394. print(f'WARNING: No labels found in {path}. See {help_url}')
  395. x['hash'] = get_hash(self.label_files + self.img_files)
  396. x['results'] = [nf, nm, ne, nc, i + 1]
  397. torch.save(x, path) # save for next time
  398. logging.info(f"New cache created: {path}")
  399. return x
  400. def __len__(self):
  401. return len(self.img_files)
  402. # def __iter__(self):
  403. # self.count = -1
  404. # print('ran dataset iter')
  405. # #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
  406. # return self
  407. def __getitem__(self, index):
  408. index = self.indices[index] # linear, shuffled, or image_weights
  409. hyp = self.hyp
  410. mosaic = self.mosaic and random.random() < hyp['mosaic']
  411. if mosaic:
  412. # Load mosaic
  413. img, labels = load_mosaic(self, index)
  414. shapes = None
  415. # MixUp https://arxiv.org/pdf/1710.09412.pdf
  416. if random.random() < hyp['mixup']:
  417. img2, labels2 = load_mosaic(self, random.randint(0, self.n - 1))
  418. r = np.random.beta(8.0, 8.0) # mixup ratio, alpha=beta=8.0
  419. img = (img * r + img2 * (1 - r)).astype(np.uint8)
  420. labels = np.concatenate((labels, labels2), 0)
  421. else:
  422. # Load image
  423. img, (h0, w0), (h, w) = load_image(self, index)
  424. # Letterbox
  425. shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
  426. img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
  427. shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
  428. # Load labels
  429. labels = []
  430. x = self.labels[index]
  431. if x.size > 0:
  432. # Normalized xywh to pixel xyxy format
  433. labels = x.copy()
  434. labels[:, 1] = ratio[0] * w * (x[:, 1] - x[:, 3] / 2) + pad[0] # pad width
  435. labels[:, 2] = ratio[1] * h * (x[:, 2] - x[:, 4] / 2) + pad[1] # pad height
  436. labels[:, 3] = ratio[0] * w * (x[:, 1] + x[:, 3] / 2) + pad[0]
  437. labels[:, 4] = ratio[1] * h * (x[:, 2] + x[:, 4] / 2) + pad[1]
  438. if self.augment:
  439. # Augment imagespace
  440. if not mosaic:
  441. img, labels = random_perspective(img, labels,
  442. degrees=hyp['degrees'],
  443. translate=hyp['translate'],
  444. scale=hyp['scale'],
  445. shear=hyp['shear'],
  446. perspective=hyp['perspective'])
  447. # Augment colorspace
  448. augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
  449. # Apply cutouts
  450. # if random.random() < 0.9:
  451. # labels = cutout(img, labels)
  452. nL = len(labels) # number of labels
  453. if nL:
  454. labels[:, 1:5] = xyxy2xywh(labels[:, 1:5]) # convert xyxy to xywh
  455. labels[:, [2, 4]] /= img.shape[0] # normalized height 0-1
  456. labels[:, [1, 3]] /= img.shape[1] # normalized width 0-1
  457. if self.augment:
  458. # flip up-down
  459. if random.random() < hyp['flipud']:
  460. img = np.flipud(img)
  461. if nL:
  462. labels[:, 2] = 1 - labels[:, 2]
  463. # flip left-right
  464. if random.random() < hyp['fliplr']:
  465. img = np.fliplr(img)
  466. if nL:
  467. labels[:, 1] = 1 - labels[:, 1]
  468. labels_out = torch.zeros((nL, 6))
  469. if nL:
  470. labels_out[:, 1:] = torch.from_numpy(labels)
  471. # Convert
  472. img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
  473. img = np.ascontiguousarray(img)
  474. return torch.from_numpy(img), labels_out, self.img_files[index], shapes
  475. @staticmethod
  476. def collate_fn(batch):
  477. img, label, path, shapes = zip(*batch) # transposed
  478. for i, l in enumerate(label):
  479. l[:, 0] = i # add target image index for build_targets()
  480. return torch.stack(img, 0), torch.cat(label, 0), path, shapes
  481. # Ancillary functions --------------------------------------------------------------------------------------------------
  482. def load_image(self, index):
  483. # loads 1 image from dataset, returns img, original hw, resized hw
  484. img = self.imgs[index]
  485. if img is None: # not cached
  486. path = self.img_files[index]
  487. img = cv2.imread(path) # BGR
  488. assert img is not None, 'Image Not Found ' + path
  489. h0, w0 = img.shape[:2] # orig hw
  490. r = self.img_size / max(h0, w0) # resize image to img_size
  491. if r != 1: # always resize down, only resize up if training with augmentation
  492. interp = cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR
  493. img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interp)
  494. return img, (h0, w0), img.shape[:2] # img, hw_original, hw_resized
  495. else:
  496. return self.imgs[index], self.img_hw0[index], self.img_hw[index] # img, hw_original, hw_resized
  497. def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5):
  498. r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
  499. hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
  500. dtype = img.dtype # uint8
  501. x = np.arange(0, 256, dtype=np.int16)
  502. lut_hue = ((x * r[0]) % 180).astype(dtype)
  503. lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
  504. lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
  505. img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype)
  506. cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
  507. # Histogram equalization
  508. # if random.random() < 0.2:
  509. # for i in range(3):
  510. # img[:, :, i] = cv2.equalizeHist(img[:, :, i])
  511. def load_mosaic(self, index):
  512. # loads images in a mosaic
  513. labels4 = []
  514. s = self.img_size
  515. yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] # mosaic center x, y
  516. indices = [index] + [self.indices[random.randint(0, self.n - 1)] for _ in range(3)] # 3 additional image indices
  517. for i, index in enumerate(indices):
  518. # Load image
  519. img, _, (h, w) = load_image(self, index)
  520. # place img in img4
  521. if i == 0: # top left
  522. img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
  523. x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
  524. x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
  525. elif i == 1: # top right
  526. x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
  527. x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
  528. elif i == 2: # bottom left
  529. x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
  530. x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
  531. elif i == 3: # bottom right
  532. x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
  533. x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
  534. img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
  535. padw = x1a - x1b
  536. padh = y1a - y1b
  537. # Labels
  538. x = self.labels[index]
  539. labels = x.copy()
  540. if x.size > 0: # Normalized xywh to pixel xyxy format
  541. labels[:, 1] = w * (x[:, 1] - x[:, 3] / 2) + padw
  542. labels[:, 2] = h * (x[:, 2] - x[:, 4] / 2) + padh
  543. labels[:, 3] = w * (x[:, 1] + x[:, 3] / 2) + padw
  544. labels[:, 4] = h * (x[:, 2] + x[:, 4] / 2) + padh
  545. labels4.append(labels)
  546. # Concat/clip labels
  547. if len(labels4):
  548. labels4 = np.concatenate(labels4, 0)
  549. np.clip(labels4[:, 1:], 0, 2 * s, out=labels4[:, 1:]) # use with random_perspective
  550. # img4, labels4 = replicate(img4, labels4) # replicate
  551. # Augment
  552. img4, labels4 = random_perspective(img4, labels4,
  553. degrees=self.hyp['degrees'],
  554. translate=self.hyp['translate'],
  555. scale=self.hyp['scale'],
  556. shear=self.hyp['shear'],
  557. perspective=self.hyp['perspective'],
  558. border=self.mosaic_border) # border to remove
  559. return img4, labels4
  560. def replicate(img, labels):
  561. # Replicate labels
  562. h, w = img.shape[:2]
  563. boxes = labels[:, 1:].astype(int)
  564. x1, y1, x2, y2 = boxes.T
  565. s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels)
  566. for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices
  567. x1b, y1b, x2b, y2b = boxes[i]
  568. bh, bw = y2b - y1b, x2b - x1b
  569. yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y
  570. x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
  571. img[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
  572. labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
  573. return img, labels
  574. def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True):
  575. # Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232
  576. shape = img.shape[:2] # current shape [height, width]
  577. if isinstance(new_shape, int):
  578. new_shape = (new_shape, new_shape)
  579. # Scale ratio (new / old)
  580. r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
  581. if not scaleup: # only scale down, do not scale up (for better test mAP)
  582. r = min(r, 1.0)
  583. # Compute padding
  584. ratio = r, r # width, height ratios
  585. new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
  586. dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
  587. if auto: # minimum rectangle
  588. dw, dh = np.mod(dw, 32), np.mod(dh, 32) # wh padding
  589. elif scaleFill: # stretch
  590. dw, dh = 0.0, 0.0
  591. new_unpad = (new_shape[1], new_shape[0])
  592. ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
  593. dw /= 2 # divide padding into 2 sides
  594. dh /= 2
  595. if shape[::-1] != new_unpad: # resize
  596. img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
  597. top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
  598. left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
  599. img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
  600. return img, ratio, (dw, dh)
  601. def random_perspective(img, targets=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0, border=(0, 0)):
  602. # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
  603. # targets = [cls, xyxy]
  604. height = img.shape[0] + border[0] * 2 # shape(h,w,c)
  605. width = img.shape[1] + border[1] * 2
  606. # Center
  607. C = np.eye(3)
  608. C[0, 2] = -img.shape[1] / 2 # x translation (pixels)
  609. C[1, 2] = -img.shape[0] / 2 # y translation (pixels)
  610. # Perspective
  611. P = np.eye(3)
  612. P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
  613. P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
  614. # Rotation and Scale
  615. R = np.eye(3)
  616. a = random.uniform(-degrees, degrees)
  617. # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
  618. s = random.uniform(1 - scale, 1 + scale)
  619. # s = 2 ** random.uniform(-scale, scale)
  620. R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
  621. # Shear
  622. S = np.eye(3)
  623. S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
  624. S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
  625. # Translation
  626. T = np.eye(3)
  627. T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
  628. T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
  629. # Combined rotation matrix
  630. M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
  631. if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
  632. if perspective:
  633. img = cv2.warpPerspective(img, M, dsize=(width, height), borderValue=(114, 114, 114))
  634. else: # affine
  635. img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
  636. # Visualize
  637. # import matplotlib.pyplot as plt
  638. # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
  639. # ax[0].imshow(img[:, :, ::-1]) # base
  640. # ax[1].imshow(img2[:, :, ::-1]) # warped
  641. # Transform label coordinates
  642. n = len(targets)
  643. if n:
  644. # warp points
  645. xy = np.ones((n * 4, 3))
  646. xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
  647. xy = xy @ M.T # transform
  648. if perspective:
  649. xy = (xy[:, :2] / xy[:, 2:3]).reshape(n, 8) # rescale
  650. else: # affine
  651. xy = xy[:, :2].reshape(n, 8)
  652. # create new boxes
  653. x = xy[:, [0, 2, 4, 6]]
  654. y = xy[:, [1, 3, 5, 7]]
  655. xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
  656. # # apply angle-based reduction of bounding boxes
  657. # radians = a * math.pi / 180
  658. # reduction = max(abs(math.sin(radians)), abs(math.cos(radians))) ** 0.5
  659. # x = (xy[:, 2] + xy[:, 0]) / 2
  660. # y = (xy[:, 3] + xy[:, 1]) / 2
  661. # w = (xy[:, 2] - xy[:, 0]) * reduction
  662. # h = (xy[:, 3] - xy[:, 1]) * reduction
  663. # xy = np.concatenate((x - w / 2, y - h / 2, x + w / 2, y + h / 2)).reshape(4, n).T
  664. # clip boxes
  665. xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width)
  666. xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height)
  667. # filter candidates
  668. i = box_candidates(box1=targets[:, 1:5].T * s, box2=xy.T)
  669. targets = targets[i]
  670. targets[:, 1:5] = xy[i]
  671. return img, targets
  672. def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.1): # box1(4,n), box2(4,n)
  673. # Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
  674. w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
  675. w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
  676. ar = np.maximum(w2 / (h2 + 1e-16), h2 / (w2 + 1e-16)) # aspect ratio
  677. return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + 1e-16) > area_thr) & (ar < ar_thr) # candidates
  678. def cutout(image, labels):
  679. # Applies image cutout augmentation https://arxiv.org/abs/1708.04552
  680. h, w = image.shape[:2]
  681. def bbox_ioa(box1, box2):
  682. # Returns the intersection over box2 area given box1, box2. box1 is 4, box2 is nx4. boxes are x1y1x2y2
  683. box2 = box2.transpose()
  684. # Get the coordinates of bounding boxes
  685. b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
  686. b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
  687. # Intersection area
  688. inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
  689. (np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)
  690. # box2 area
  691. box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + 1e-16
  692. # Intersection over box2 area
  693. return inter_area / box2_area
  694. # create random masks
  695. scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
  696. for s in scales:
  697. mask_h = random.randint(1, int(h * s))
  698. mask_w = random.randint(1, int(w * s))
  699. # box
  700. xmin = max(0, random.randint(0, w) - mask_w // 2)
  701. ymin = max(0, random.randint(0, h) - mask_h // 2)
  702. xmax = min(w, xmin + mask_w)
  703. ymax = min(h, ymin + mask_h)
  704. # apply random color mask
  705. image[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
  706. # return unobscured labels
  707. if len(labels) and s > 0.03:
  708. box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
  709. ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
  710. labels = labels[ioa < 0.60] # remove >60% obscured labels
  711. return labels
  712. def create_folder(path='./new'):
  713. # Create folder
  714. if os.path.exists(path):
  715. shutil.rmtree(path) # delete output folder
  716. os.makedirs(path) # make new output folder
  717. def flatten_recursive(path='../coco128'):
  718. # Flatten a recursive directory by bringing all files to top level
  719. new_path = Path(path + '_flat')
  720. create_folder(new_path)
  721. for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)):
  722. shutil.copyfile(file, new_path / Path(file).name)
  723. def extract_boxes(path='../coco128/'): # from utils.datasets import *; extract_boxes('../coco128')
  724. # Convert detection dataset into classification dataset, with one directory per class
  725. path = Path(path) # images dir
  726. shutil.rmtree(path / 'classifier') if (path / 'classifier').is_dir() else None # remove existing
  727. files = list(path.rglob('*.*'))
  728. n = len(files) # number of files
  729. for im_file in tqdm(files, total=n):
  730. if im_file.suffix[1:] in img_formats:
  731. # image
  732. im = cv2.imread(str(im_file))[..., ::-1] # BGR to RGB
  733. h, w = im.shape[:2]
  734. # labels
  735. lb_file = Path(img2label_paths([str(im_file)])[0])
  736. if Path(lb_file).exists():
  737. with open(lb_file, 'r') as f:
  738. lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels
  739. for j, x in enumerate(lb):
  740. c = int(x[0]) # class
  741. f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg' # new filename
  742. if not f.parent.is_dir():
  743. f.parent.mkdir(parents=True)
  744. b = x[1:] * [w, h, w, h] # box
  745. # b[2:] = b[2:].max() # rectangle to square
  746. b[2:] = b[2:] * 1.2 + 3 # pad
  747. b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int)
  748. b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image
  749. b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
  750. assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}'
  751. def autosplit(path='../coco128', weights=(0.9, 0.1, 0.0)): # from utils.datasets import *; autosplit('../coco128')
  752. """ Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
  753. # Arguments
  754. path: Path to images directory
  755. weights: Train, val, test weights (list)
  756. """
  757. path = Path(path) # images dir
  758. files = list(path.rglob('*.*'))
  759. n = len(files) # number of files
  760. indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split
  761. txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files
  762. [(path / x).unlink() for x in txt if (path / x).exists()] # remove existing
  763. for i, img in tqdm(zip(indices, files), total=n):
  764. if img.suffix[1:] in img_formats:
  765. with open(path / txt[i], 'a') as f:
  766. f.write(str(img) + '\n') # add image to txt file
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...