Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

datasets.py 47 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
  1. # Dataset utils and dataloaders
  2. import glob
  3. import hashlib
  4. import json
  5. import logging
  6. import math
  7. import os
  8. import random
  9. import shutil
  10. import time
  11. from itertools import repeat
  12. from multiprocessing.pool import ThreadPool, Pool
  13. from pathlib import Path
  14. from threading import Thread
  15. import cv2
  16. import numpy as np
  17. import torch
  18. import torch.nn.functional as F
  19. import yaml
  20. from PIL import Image, ExifTags
  21. from torch.utils.data import Dataset
  22. from tqdm import tqdm
  23. from utils.general import check_requirements, check_file, check_dataset, xywh2xyxy, xywhn2xyxy, xyxy2xywhn, \
  24. xyn2xy, segment2box, segments2boxes, resample_segments, clean_str
  25. from utils.torch_utils import torch_distributed_zero_first
  26. # Parameters
  27. help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
  28. img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng', 'webp', 'mpo'] # acceptable image suffixes
  29. vid_formats = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv'] # acceptable video suffixes
  30. num_threads = min(8, os.cpu_count()) # number of multiprocessing threads
  31. logger = logging.getLogger(__name__)
  32. # Get orientation exif tag
  33. for orientation in ExifTags.TAGS.keys():
  34. if ExifTags.TAGS[orientation] == 'Orientation':
  35. break
  36. def get_hash(paths):
  37. # Returns a single hash value of a list of paths (files or dirs)
  38. size = sum(os.path.getsize(p) for p in paths if os.path.exists(p)) # sizes
  39. h = hashlib.md5(str(size).encode()) # hash sizes
  40. h.update(''.join(paths).encode()) # hash paths
  41. return h.hexdigest() # return hash
  42. def exif_size(img):
  43. # Returns exif-corrected PIL size
  44. s = img.size # (width, height)
  45. try:
  46. rotation = dict(img._getexif().items())[orientation]
  47. if rotation == 6: # rotation 270
  48. s = (s[1], s[0])
  49. elif rotation == 8: # rotation 90
  50. s = (s[1], s[0])
  51. except:
  52. pass
  53. return s
  54. def create_dataloader(path, imgsz, batch_size, stride, single_cls=False, hyp=None, augment=False, cache=False, pad=0.0,
  55. rect=False, rank=-1, workers=8, image_weights=False, quad=False, prefix=''):
  56. # Make sure only the first process in DDP process the dataset first, and the following others can use the cache
  57. with torch_distributed_zero_first(rank):
  58. dataset = LoadImagesAndLabels(path, imgsz, batch_size,
  59. augment=augment, # augment images
  60. hyp=hyp, # augmentation hyperparameters
  61. rect=rect, # rectangular training
  62. cache_images=cache,
  63. single_cls=single_cls,
  64. stride=int(stride),
  65. pad=pad,
  66. image_weights=image_weights,
  67. prefix=prefix)
  68. batch_size = min(batch_size, len(dataset))
  69. nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, workers]) # number of workers
  70. sampler = torch.utils.data.distributed.DistributedSampler(dataset) if rank != -1 else None
  71. loader = torch.utils.data.DataLoader if image_weights else InfiniteDataLoader
  72. # Use torch.utils.data.DataLoader() if dataset.properties will update during training else InfiniteDataLoader()
  73. dataloader = loader(dataset,
  74. batch_size=batch_size,
  75. num_workers=nw,
  76. sampler=sampler,
  77. pin_memory=True,
  78. collate_fn=LoadImagesAndLabels.collate_fn4 if quad else LoadImagesAndLabels.collate_fn)
  79. return dataloader, dataset
  80. class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader):
  81. """ Dataloader that reuses workers
  82. Uses same syntax as vanilla DataLoader
  83. """
  84. def __init__(self, *args, **kwargs):
  85. super().__init__(*args, **kwargs)
  86. object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
  87. self.iterator = super().__iter__()
  88. def __len__(self):
  89. return len(self.batch_sampler.sampler)
  90. def __iter__(self):
  91. for i in range(len(self)):
  92. yield next(self.iterator)
  93. class _RepeatSampler(object):
  94. """ Sampler that repeats forever
  95. Args:
  96. sampler (Sampler)
  97. """
  98. def __init__(self, sampler):
  99. self.sampler = sampler
  100. def __iter__(self):
  101. while True:
  102. yield from iter(self.sampler)
  103. class LoadImages: # for inference
  104. def __init__(self, path, img_size=640, stride=32):
  105. p = str(Path(path).absolute()) # os-agnostic absolute path
  106. if '*' in p:
  107. files = sorted(glob.glob(p, recursive=True)) # glob
  108. elif os.path.isdir(p):
  109. files = sorted(glob.glob(os.path.join(p, '*.*'))) # dir
  110. elif os.path.isfile(p):
  111. files = [p] # files
  112. else:
  113. raise Exception(f'ERROR: {p} does not exist')
  114. images = [x for x in files if x.split('.')[-1].lower() in img_formats]
  115. videos = [x for x in files if x.split('.')[-1].lower() in vid_formats]
  116. ni, nv = len(images), len(videos)
  117. self.img_size = img_size
  118. self.stride = stride
  119. self.files = images + videos
  120. self.nf = ni + nv # number of files
  121. self.video_flag = [False] * ni + [True] * nv
  122. self.mode = 'image'
  123. if any(videos):
  124. self.new_video(videos[0]) # new video
  125. else:
  126. self.cap = None
  127. assert self.nf > 0, f'No images or videos found in {p}. ' \
  128. f'Supported formats are:\nimages: {img_formats}\nvideos: {vid_formats}'
  129. def __iter__(self):
  130. self.count = 0
  131. return self
  132. def __next__(self):
  133. if self.count == self.nf:
  134. raise StopIteration
  135. path = self.files[self.count]
  136. if self.video_flag[self.count]:
  137. # Read video
  138. self.mode = 'video'
  139. ret_val, img0 = self.cap.read()
  140. if not ret_val:
  141. self.count += 1
  142. self.cap.release()
  143. if self.count == self.nf: # last video
  144. raise StopIteration
  145. else:
  146. path = self.files[self.count]
  147. self.new_video(path)
  148. ret_val, img0 = self.cap.read()
  149. self.frame += 1
  150. print(f'video {self.count + 1}/{self.nf} ({self.frame}/{self.frames}) {path}: ', end='')
  151. else:
  152. # Read image
  153. self.count += 1
  154. img0 = cv2.imread(path) # BGR
  155. assert img0 is not None, 'Image Not Found ' + path
  156. print(f'image {self.count}/{self.nf} {path}: ', end='')
  157. # Padded resize
  158. img = letterbox(img0, self.img_size, stride=self.stride)[0]
  159. # Convert
  160. img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB and HWC to CHW
  161. img = np.ascontiguousarray(img)
  162. return path, img, img0, self.cap
  163. def new_video(self, path):
  164. self.frame = 0
  165. self.cap = cv2.VideoCapture(path)
  166. self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
  167. def __len__(self):
  168. return self.nf # number of files
  169. class LoadWebcam: # for inference
  170. def __init__(self, pipe='0', img_size=640, stride=32):
  171. self.img_size = img_size
  172. self.stride = stride
  173. if pipe.isnumeric():
  174. pipe = eval(pipe) # local camera
  175. # pipe = 'rtsp://192.168.1.64/1' # IP camera
  176. # pipe = 'rtsp://username:password@192.168.1.64/1' # IP camera with login
  177. # pipe = 'http://wmccpinetop.axiscam.net/mjpg/video.mjpg' # IP golf camera
  178. self.pipe = pipe
  179. self.cap = cv2.VideoCapture(pipe) # video capture object
  180. self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3) # set buffer size
  181. def __iter__(self):
  182. self.count = -1
  183. return self
  184. def __next__(self):
  185. self.count += 1
  186. if cv2.waitKey(1) == ord('q'): # q to quit
  187. self.cap.release()
  188. cv2.destroyAllWindows()
  189. raise StopIteration
  190. # Read frame
  191. if self.pipe == 0: # local camera
  192. ret_val, img0 = self.cap.read()
  193. img0 = cv2.flip(img0, 1) # flip left-right
  194. else: # IP camera
  195. n = 0
  196. while True:
  197. n += 1
  198. self.cap.grab()
  199. if n % 30 == 0: # skip frames
  200. ret_val, img0 = self.cap.retrieve()
  201. if ret_val:
  202. break
  203. # Print
  204. assert ret_val, f'Camera Error {self.pipe}'
  205. img_path = 'webcam.jpg'
  206. print(f'webcam {self.count}: ', end='')
  207. # Padded resize
  208. img = letterbox(img0, self.img_size, stride=self.stride)[0]
  209. # Convert
  210. img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB and HWC to CHW
  211. img = np.ascontiguousarray(img)
  212. return img_path, img, img0, None
  213. def __len__(self):
  214. return 0
  215. class LoadStreams: # multiple IP or RTSP cameras
  216. def __init__(self, sources='streams.txt', img_size=640, stride=32):
  217. self.mode = 'stream'
  218. self.img_size = img_size
  219. self.stride = stride
  220. if os.path.isfile(sources):
  221. with open(sources, 'r') as f:
  222. sources = [x.strip() for x in f.read().strip().splitlines() if len(x.strip())]
  223. else:
  224. sources = [sources]
  225. n = len(sources)
  226. self.imgs, self.fps, self.frames, self.threads = [None] * n, [0] * n, [0] * n, [None] * n
  227. self.sources = [clean_str(x) for x in sources] # clean source names for later
  228. for i, s in enumerate(sources): # index, source
  229. # Start thread to read frames from video stream
  230. print(f'{i + 1}/{n}: {s}... ', end='')
  231. if 'youtube.com/' in s or 'youtu.be/' in s: # if source is YouTube video
  232. check_requirements(('pafy', 'youtube_dl'))
  233. import pafy
  234. s = pafy.new(s).getbest(preftype="mp4").url # YouTube URL
  235. s = eval(s) if s.isnumeric() else s # i.e. s = '0' local webcam
  236. cap = cv2.VideoCapture(s)
  237. assert cap.isOpened(), f'Failed to open {s}'
  238. w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
  239. h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
  240. self.fps[i] = max(cap.get(cv2.CAP_PROP_FPS) % 100, 0) or 30.0 # 30 FPS fallback
  241. self.frames[i] = max(int(cap.get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float('inf') # infinite stream fallback
  242. _, self.imgs[i] = cap.read() # guarantee first frame
  243. self.threads[i] = Thread(target=self.update, args=([i, cap]), daemon=True)
  244. print(f" success ({self.frames[i]} frames {w}x{h} at {self.fps[i]:.2f} FPS)")
  245. self.threads[i].start()
  246. print('') # newline
  247. # check for common shapes
  248. s = np.stack([letterbox(x, self.img_size, stride=self.stride)[0].shape for x in self.imgs], 0) # shapes
  249. self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal
  250. if not self.rect:
  251. print('WARNING: Different stream shapes detected. For optimal performance supply similarly-shaped streams.')
  252. def update(self, i, cap):
  253. # Read stream `i` frames in daemon thread
  254. n, f = 0, self.frames[i]
  255. while cap.isOpened() and n < f:
  256. n += 1
  257. # _, self.imgs[index] = cap.read()
  258. cap.grab()
  259. if n % 4: # read every 4th frame
  260. success, im = cap.retrieve()
  261. self.imgs[i] = im if success else self.imgs[i] * 0
  262. time.sleep(1 / self.fps[i]) # wait time
  263. def __iter__(self):
  264. self.count = -1
  265. return self
  266. def __next__(self):
  267. self.count += 1
  268. if not all(x.is_alive() for x in self.threads) or cv2.waitKey(1) == ord('q'): # q to quit
  269. cv2.destroyAllWindows()
  270. raise StopIteration
  271. # Letterbox
  272. img0 = self.imgs.copy()
  273. img = [letterbox(x, self.img_size, auto=self.rect, stride=self.stride)[0] for x in img0]
  274. # Stack
  275. img = np.stack(img, 0)
  276. # Convert
  277. img = img[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB and BHWC to BCHW
  278. img = np.ascontiguousarray(img)
  279. return self.sources, img, img0, None
  280. def __len__(self):
  281. return 0 # 1E12 frames = 32 streams at 30 FPS for 30 years
  282. def img2label_paths(img_paths):
  283. # Define label paths as a function of image paths
  284. sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep # /images/, /labels/ substrings
  285. return [sb.join(x.rsplit(sa, 1)).rsplit('.', 1)[0] + '.txt' for x in img_paths]
  286. class LoadImagesAndLabels(Dataset): # for training/testing
  287. def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
  288. cache_images=False, single_cls=False, stride=32, pad=0.0, prefix=''):
  289. self.img_size = img_size
  290. self.augment = augment
  291. self.hyp = hyp
  292. self.image_weights = image_weights
  293. self.rect = False if image_weights else rect
  294. self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)
  295. self.mosaic_border = [-img_size // 2, -img_size // 2]
  296. self.stride = stride
  297. self.path = path
  298. try:
  299. f = [] # image files
  300. for p in path if isinstance(path, list) else [path]:
  301. p = Path(p) # os-agnostic
  302. if p.is_dir(): # dir
  303. f += glob.glob(str(p / '**' / '*.*'), recursive=True)
  304. # f = list(p.rglob('**/*.*')) # pathlib
  305. elif p.is_file(): # file
  306. with open(p, 'r') as t:
  307. t = t.read().strip().splitlines()
  308. parent = str(p.parent) + os.sep
  309. f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path
  310. # f += [p.parent / x.lstrip(os.sep) for x in t] # local to global path (pathlib)
  311. else:
  312. raise Exception(f'{prefix}{p} does not exist')
  313. self.img_files = sorted([x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in img_formats])
  314. # self.img_files = sorted([x for x in f if x.suffix[1:].lower() in img_formats]) # pathlib
  315. assert self.img_files, f'{prefix}No images found'
  316. except Exception as e:
  317. raise Exception(f'{prefix}Error loading data from {path}: {e}\nSee {help_url}')
  318. # Check cache
  319. self.label_files = img2label_paths(self.img_files) # labels
  320. cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix('.cache') # cached labels
  321. if cache_path.is_file():
  322. cache, exists = torch.load(cache_path), True # load
  323. if cache.get('version') != 0.3 or cache.get('hash') != get_hash(self.label_files + self.img_files):
  324. cache, exists = self.cache_labels(cache_path, prefix), False # re-cache
  325. else:
  326. cache, exists = self.cache_labels(cache_path, prefix), False # cache
  327. # Display cache
  328. nf, nm, ne, nc, n = cache.pop('results') # found, missing, empty, corrupted, total
  329. if exists:
  330. d = f"Scanning '{cache_path}' images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupted"
  331. tqdm(None, desc=prefix + d, total=n, initial=n) # display cache results
  332. if cache['msgs']:
  333. logging.info('\n'.join(cache['msgs'])) # display warnings
  334. assert nf > 0 or not augment, f'{prefix}No labels in {cache_path}. Can not train without labels. See {help_url}'
  335. # Read cache
  336. [cache.pop(k) for k in ('hash', 'version', 'msgs')] # remove items
  337. labels, shapes, self.segments = zip(*cache.values())
  338. self.labels = list(labels)
  339. self.shapes = np.array(shapes, dtype=np.float64)
  340. self.img_files = list(cache.keys()) # update
  341. self.label_files = img2label_paths(cache.keys()) # update
  342. if single_cls:
  343. for x in self.labels:
  344. x[:, 0] = 0
  345. n = len(shapes) # number of images
  346. bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index
  347. nb = bi[-1] + 1 # number of batches
  348. self.batch = bi # batch index of image
  349. self.n = n
  350. self.indices = range(n)
  351. # Rectangular Training
  352. if self.rect:
  353. # Sort by aspect ratio
  354. s = self.shapes # wh
  355. ar = s[:, 1] / s[:, 0] # aspect ratio
  356. irect = ar.argsort()
  357. self.img_files = [self.img_files[i] for i in irect]
  358. self.label_files = [self.label_files[i] for i in irect]
  359. self.labels = [self.labels[i] for i in irect]
  360. self.shapes = s[irect] # wh
  361. ar = ar[irect]
  362. # Set training image shapes
  363. shapes = [[1, 1]] * nb
  364. for i in range(nb):
  365. ari = ar[bi == i]
  366. mini, maxi = ari.min(), ari.max()
  367. if maxi < 1:
  368. shapes[i] = [maxi, 1]
  369. elif mini > 1:
  370. shapes[i] = [1, 1 / mini]
  371. self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride
  372. # Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
  373. self.imgs = [None] * n
  374. if cache_images:
  375. gb = 0 # Gigabytes of cached images
  376. self.img_hw0, self.img_hw = [None] * n, [None] * n
  377. results = ThreadPool(num_threads).imap(lambda x: load_image(*x), zip(repeat(self), range(n)))
  378. pbar = tqdm(enumerate(results), total=n)
  379. for i, x in pbar:
  380. self.imgs[i], self.img_hw0[i], self.img_hw[i] = x # img, hw_original, hw_resized = load_image(self, i)
  381. gb += self.imgs[i].nbytes
  382. pbar.desc = f'{prefix}Caching images ({gb / 1E9:.1f}GB)'
  383. pbar.close()
  384. def cache_labels(self, path=Path('./labels.cache'), prefix=''):
  385. # Cache dataset labels, check images and read shapes
  386. x = {} # dict
  387. nm, nf, ne, nc, msgs = 0, 0, 0, 0, [] # number missing, found, empty, corrupt, messages
  388. desc = f"{prefix}Scanning '{path.parent / path.stem}' images and labels..."
  389. with Pool(num_threads) as pool:
  390. pbar = tqdm(pool.imap_unordered(verify_image_label, zip(self.img_files, self.label_files, repeat(prefix))),
  391. desc=desc, total=len(self.img_files))
  392. for im_file, l, shape, segments, nm_f, nf_f, ne_f, nc_f, msg in pbar:
  393. nm += nm_f
  394. nf += nf_f
  395. ne += ne_f
  396. nc += nc_f
  397. if im_file:
  398. x[im_file] = [l, shape, segments]
  399. if msg:
  400. msgs.append(msg)
  401. pbar.desc = f"{desc}{nf} found, {nm} missing, {ne} empty, {nc} corrupted"
  402. pbar.close()
  403. if msgs:
  404. logging.info('\n'.join(msgs))
  405. if nf == 0:
  406. logging.info(f'{prefix}WARNING: No labels found in {path}. See {help_url}')
  407. x['hash'] = get_hash(self.label_files + self.img_files)
  408. x['results'] = nf, nm, ne, nc, len(self.img_files)
  409. x['msgs'] = msgs # warnings
  410. x['version'] = 0.3 # cache version
  411. try:
  412. torch.save(x, path) # save cache for next time
  413. logging.info(f'{prefix}New cache created: {path}')
  414. except Exception as e:
  415. logging.info(f'{prefix}WARNING: Cache directory {path.parent} is not writeable: {e}') # path not writeable
  416. return x
  417. def __len__(self):
  418. return len(self.img_files)
  419. # def __iter__(self):
  420. # self.count = -1
  421. # print('ran dataset iter')
  422. # #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
  423. # return self
  424. def __getitem__(self, index):
  425. index = self.indices[index] # linear, shuffled, or image_weights
  426. hyp = self.hyp
  427. mosaic = self.mosaic and random.random() < hyp['mosaic']
  428. if mosaic:
  429. # Load mosaic
  430. img, labels = load_mosaic(self, index)
  431. shapes = None
  432. # MixUp https://arxiv.org/pdf/1710.09412.pdf
  433. if random.random() < hyp['mixup']:
  434. img2, labels2 = load_mosaic(self, random.randint(0, self.n - 1))
  435. r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0
  436. img = (img * r + img2 * (1 - r)).astype(np.uint8)
  437. labels = np.concatenate((labels, labels2), 0)
  438. else:
  439. # Load image
  440. img, (h0, w0), (h, w) = load_image(self, index)
  441. # Letterbox
  442. shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
  443. img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
  444. shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
  445. labels = self.labels[index].copy()
  446. if labels.size: # normalized xywh to pixel xyxy format
  447. labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])
  448. if self.augment:
  449. # Augment imagespace
  450. if not mosaic:
  451. img, labels = random_perspective(img, labels,
  452. degrees=hyp['degrees'],
  453. translate=hyp['translate'],
  454. scale=hyp['scale'],
  455. shear=hyp['shear'],
  456. perspective=hyp['perspective'])
  457. # Augment colorspace
  458. augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
  459. # Apply cutouts
  460. # if random.random() < 0.9:
  461. # labels = cutout(img, labels)
  462. nL = len(labels) # number of labels
  463. if nL:
  464. labels[:, 1:5] = xyxy2xywhn(labels[:, 1:5], w=img.shape[1], h=img.shape[0]) # xyxy to xywh normalized
  465. if self.augment:
  466. # flip up-down
  467. if random.random() < hyp['flipud']:
  468. img = np.flipud(img)
  469. if nL:
  470. labels[:, 2] = 1 - labels[:, 2]
  471. # flip left-right
  472. if random.random() < hyp['fliplr']:
  473. img = np.fliplr(img)
  474. if nL:
  475. labels[:, 1] = 1 - labels[:, 1]
  476. labels_out = torch.zeros((nL, 6))
  477. if nL:
  478. labels_out[:, 1:] = torch.from_numpy(labels)
  479. # Convert
  480. img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3 x img_height x img_width
  481. img = np.ascontiguousarray(img)
  482. return torch.from_numpy(img), labels_out, self.img_files[index], shapes
  483. @staticmethod
  484. def collate_fn(batch):
  485. img, label, path, shapes = zip(*batch) # transposed
  486. for i, l in enumerate(label):
  487. l[:, 0] = i # add target image index for build_targets()
  488. return torch.stack(img, 0), torch.cat(label, 0), path, shapes
  489. @staticmethod
  490. def collate_fn4(batch):
  491. img, label, path, shapes = zip(*batch) # transposed
  492. n = len(shapes) // 4
  493. img4, label4, path4, shapes4 = [], [], path[:n], shapes[:n]
  494. ho = torch.tensor([[0., 0, 0, 1, 0, 0]])
  495. wo = torch.tensor([[0., 0, 1, 0, 0, 0]])
  496. s = torch.tensor([[1, 1, .5, .5, .5, .5]]) # scale
  497. for i in range(n): # zidane torch.zeros(16,3,720,1280) # BCHW
  498. i *= 4
  499. if random.random() < 0.5:
  500. im = F.interpolate(img[i].unsqueeze(0).float(), scale_factor=2., mode='bilinear', align_corners=False)[
  501. 0].type(img[i].type())
  502. l = label[i]
  503. else:
  504. im = torch.cat((torch.cat((img[i], img[i + 1]), 1), torch.cat((img[i + 2], img[i + 3]), 1)), 2)
  505. l = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s
  506. img4.append(im)
  507. label4.append(l)
  508. for i, l in enumerate(label4):
  509. l[:, 0] = i # add target image index for build_targets()
  510. return torch.stack(img4, 0), torch.cat(label4, 0), path4, shapes4
  511. # Ancillary functions --------------------------------------------------------------------------------------------------
  512. def load_image(self, index):
  513. # loads 1 image from dataset, returns img, original hw, resized hw
  514. img = self.imgs[index]
  515. if img is None: # not cached
  516. path = self.img_files[index]
  517. img = cv2.imread(path) # BGR
  518. assert img is not None, 'Image Not Found ' + path
  519. h0, w0 = img.shape[:2] # orig hw
  520. r = self.img_size / max(h0, w0) # ratio
  521. if r != 1: # if sizes are not equal
  522. img = cv2.resize(img, (int(w0 * r), int(h0 * r)),
  523. interpolation=cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR)
  524. return img, (h0, w0), img.shape[:2] # img, hw_original, hw_resized
  525. else:
  526. return self.imgs[index], self.img_hw0[index], self.img_hw[index] # img, hw_original, hw_resized
  527. def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5):
  528. if hgain or sgain or vgain:
  529. r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
  530. hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
  531. dtype = img.dtype # uint8
  532. x = np.arange(0, 256, dtype=r.dtype)
  533. lut_hue = ((x * r[0]) % 180).astype(dtype)
  534. lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
  535. lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
  536. img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val)))
  537. cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
  538. def hist_equalize(img, clahe=True, bgr=False):
  539. # Equalize histogram on BGR image 'img' with img.shape(n,m,3) and range 0-255
  540. yuv = cv2.cvtColor(img, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV)
  541. if clahe:
  542. c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
  543. yuv[:, :, 0] = c.apply(yuv[:, :, 0])
  544. else:
  545. yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0]) # equalize Y channel histogram
  546. return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB) # convert YUV image to RGB
  547. def load_mosaic(self, index):
  548. # loads images in a 4-mosaic
  549. labels4, segments4 = [], []
  550. s = self.img_size
  551. yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] # mosaic center x, y
  552. indices = [index] + random.choices(self.indices, k=3) # 3 additional image indices
  553. for i, index in enumerate(indices):
  554. # Load image
  555. img, _, (h, w) = load_image(self, index)
  556. # place img in img4
  557. if i == 0: # top left
  558. img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
  559. x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
  560. x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
  561. elif i == 1: # top right
  562. x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
  563. x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
  564. elif i == 2: # bottom left
  565. x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
  566. x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
  567. elif i == 3: # bottom right
  568. x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
  569. x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
  570. img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
  571. padw = x1a - x1b
  572. padh = y1a - y1b
  573. # Labels
  574. labels, segments = self.labels[index].copy(), self.segments[index].copy()
  575. if labels.size:
  576. labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format
  577. segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
  578. labels4.append(labels)
  579. segments4.extend(segments)
  580. # Concat/clip labels
  581. labels4 = np.concatenate(labels4, 0)
  582. for x in (labels4[:, 1:], *segments4):
  583. np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
  584. # img4, labels4 = replicate(img4, labels4) # replicate
  585. # Augment
  586. img4, labels4 = random_perspective(img4, labels4, segments4,
  587. degrees=self.hyp['degrees'],
  588. translate=self.hyp['translate'],
  589. scale=self.hyp['scale'],
  590. shear=self.hyp['shear'],
  591. perspective=self.hyp['perspective'],
  592. border=self.mosaic_border) # border to remove
  593. return img4, labels4
  594. def load_mosaic9(self, index):
  595. # loads images in a 9-mosaic
  596. labels9, segments9 = [], []
  597. s = self.img_size
  598. indices = [index] + random.choices(self.indices, k=8) # 8 additional image indices
  599. for i, index in enumerate(indices):
  600. # Load image
  601. img, _, (h, w) = load_image(self, index)
  602. # place img in img9
  603. if i == 0: # center
  604. img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
  605. h0, w0 = h, w
  606. c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates
  607. elif i == 1: # top
  608. c = s, s - h, s + w, s
  609. elif i == 2: # top right
  610. c = s + wp, s - h, s + wp + w, s
  611. elif i == 3: # right
  612. c = s + w0, s, s + w0 + w, s + h
  613. elif i == 4: # bottom right
  614. c = s + w0, s + hp, s + w0 + w, s + hp + h
  615. elif i == 5: # bottom
  616. c = s + w0 - w, s + h0, s + w0, s + h0 + h
  617. elif i == 6: # bottom left
  618. c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h
  619. elif i == 7: # left
  620. c = s - w, s + h0 - h, s, s + h0
  621. elif i == 8: # top left
  622. c = s - w, s + h0 - hp - h, s, s + h0 - hp
  623. padx, pady = c[:2]
  624. x1, y1, x2, y2 = [max(x, 0) for x in c] # allocate coords
  625. # Labels
  626. labels, segments = self.labels[index].copy(), self.segments[index].copy()
  627. if labels.size:
  628. labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady) # normalized xywh to pixel xyxy format
  629. segments = [xyn2xy(x, w, h, padx, pady) for x in segments]
  630. labels9.append(labels)
  631. segments9.extend(segments)
  632. # Image
  633. img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:] # img9[ymin:ymax, xmin:xmax]
  634. hp, wp = h, w # height, width previous
  635. # Offset
  636. yc, xc = [int(random.uniform(0, s)) for _ in self.mosaic_border] # mosaic center x, y
  637. img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s]
  638. # Concat/clip labels
  639. labels9 = np.concatenate(labels9, 0)
  640. labels9[:, [1, 3]] -= xc
  641. labels9[:, [2, 4]] -= yc
  642. c = np.array([xc, yc]) # centers
  643. segments9 = [x - c for x in segments9]
  644. for x in (labels9[:, 1:], *segments9):
  645. np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
  646. # img9, labels9 = replicate(img9, labels9) # replicate
  647. # Augment
  648. img9, labels9 = random_perspective(img9, labels9, segments9,
  649. degrees=self.hyp['degrees'],
  650. translate=self.hyp['translate'],
  651. scale=self.hyp['scale'],
  652. shear=self.hyp['shear'],
  653. perspective=self.hyp['perspective'],
  654. border=self.mosaic_border) # border to remove
  655. return img9, labels9
  656. def replicate(img, labels):
  657. # Replicate labels
  658. h, w = img.shape[:2]
  659. boxes = labels[:, 1:].astype(int)
  660. x1, y1, x2, y2 = boxes.T
  661. s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels)
  662. for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices
  663. x1b, y1b, x2b, y2b = boxes[i]
  664. bh, bw = y2b - y1b, x2b - x1b
  665. yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y
  666. x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
  667. img[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
  668. labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
  669. return img, labels
  670. def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
  671. # Resize and pad image while meeting stride-multiple constraints
  672. shape = img.shape[:2] # current shape [height, width]
  673. if isinstance(new_shape, int):
  674. new_shape = (new_shape, new_shape)
  675. # Scale ratio (new / old)
  676. r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
  677. if not scaleup: # only scale down, do not scale up (for better test mAP)
  678. r = min(r, 1.0)
  679. # Compute padding
  680. ratio = r, r # width, height ratios
  681. new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
  682. dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
  683. if auto: # minimum rectangle
  684. dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
  685. elif scaleFill: # stretch
  686. dw, dh = 0.0, 0.0
  687. new_unpad = (new_shape[1], new_shape[0])
  688. ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
  689. dw /= 2 # divide padding into 2 sides
  690. dh /= 2
  691. if shape[::-1] != new_unpad: # resize
  692. img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
  693. top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
  694. left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
  695. img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
  696. return img, ratio, (dw, dh)
  697. def random_perspective(img, targets=(), segments=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0,
  698. border=(0, 0)):
  699. # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
  700. # targets = [cls, xyxy]
  701. height = img.shape[0] + border[0] * 2 # shape(h,w,c)
  702. width = img.shape[1] + border[1] * 2
  703. # Center
  704. C = np.eye(3)
  705. C[0, 2] = -img.shape[1] / 2 # x translation (pixels)
  706. C[1, 2] = -img.shape[0] / 2 # y translation (pixels)
  707. # Perspective
  708. P = np.eye(3)
  709. P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
  710. P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
  711. # Rotation and Scale
  712. R = np.eye(3)
  713. a = random.uniform(-degrees, degrees)
  714. # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
  715. s = random.uniform(1 - scale, 1 + scale)
  716. # s = 2 ** random.uniform(-scale, scale)
  717. R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
  718. # Shear
  719. S = np.eye(3)
  720. S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
  721. S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
  722. # Translation
  723. T = np.eye(3)
  724. T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
  725. T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
  726. # Combined rotation matrix
  727. M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
  728. if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
  729. if perspective:
  730. img = cv2.warpPerspective(img, M, dsize=(width, height), borderValue=(114, 114, 114))
  731. else: # affine
  732. img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
  733. # Visualize
  734. # import matplotlib.pyplot as plt
  735. # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
  736. # ax[0].imshow(img[:, :, ::-1]) # base
  737. # ax[1].imshow(img2[:, :, ::-1]) # warped
  738. # Transform label coordinates
  739. n = len(targets)
  740. if n:
  741. use_segments = any(x.any() for x in segments)
  742. new = np.zeros((n, 4))
  743. if use_segments: # warp segments
  744. segments = resample_segments(segments) # upsample
  745. for i, segment in enumerate(segments):
  746. xy = np.ones((len(segment), 3))
  747. xy[:, :2] = segment
  748. xy = xy @ M.T # transform
  749. xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2] # perspective rescale or affine
  750. # clip
  751. new[i] = segment2box(xy, width, height)
  752. else: # warp boxes
  753. xy = np.ones((n * 4, 3))
  754. xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
  755. xy = xy @ M.T # transform
  756. xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine
  757. # create new boxes
  758. x = xy[:, [0, 2, 4, 6]]
  759. y = xy[:, [1, 3, 5, 7]]
  760. new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
  761. # clip
  762. new[:, [0, 2]] = new[:, [0, 2]].clip(0, width)
  763. new[:, [1, 3]] = new[:, [1, 3]].clip(0, height)
  764. # filter candidates
  765. i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10)
  766. targets = targets[i]
  767. targets[:, 1:5] = new[i]
  768. return img, targets
  769. def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n)
  770. # Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
  771. w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
  772. w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
  773. ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio
  774. return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates
  775. def cutout(image, labels):
  776. # Applies image cutout augmentation https://arxiv.org/abs/1708.04552
  777. h, w = image.shape[:2]
  778. def bbox_ioa(box1, box2):
  779. # Returns the intersection over box2 area given box1, box2. box1 is 4, box2 is nx4. boxes are x1y1x2y2
  780. box2 = box2.transpose()
  781. # Get the coordinates of bounding boxes
  782. b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
  783. b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
  784. # Intersection area
  785. inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
  786. (np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)
  787. # box2 area
  788. box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + 1e-16
  789. # Intersection over box2 area
  790. return inter_area / box2_area
  791. # create random masks
  792. scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
  793. for s in scales:
  794. mask_h = random.randint(1, int(h * s))
  795. mask_w = random.randint(1, int(w * s))
  796. # box
  797. xmin = max(0, random.randint(0, w) - mask_w // 2)
  798. ymin = max(0, random.randint(0, h) - mask_h // 2)
  799. xmax = min(w, xmin + mask_w)
  800. ymax = min(h, ymin + mask_h)
  801. # apply random color mask
  802. image[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
  803. # return unobscured labels
  804. if len(labels) and s > 0.03:
  805. box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
  806. ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
  807. labels = labels[ioa < 0.60] # remove >60% obscured labels
  808. return labels
  809. def create_folder(path='./new'):
  810. # Create folder
  811. if os.path.exists(path):
  812. shutil.rmtree(path) # delete output folder
  813. os.makedirs(path) # make new output folder
  814. def flatten_recursive(path='../datasets/coco128'):
  815. # Flatten a recursive directory by bringing all files to top level
  816. new_path = Path(path + '_flat')
  817. create_folder(new_path)
  818. for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)):
  819. shutil.copyfile(file, new_path / Path(file).name)
  820. def extract_boxes(path='../datasets/coco128'): # from utils.datasets import *; extract_boxes()
  821. # Convert detection dataset into classification dataset, with one directory per class
  822. path = Path(path) # images dir
  823. shutil.rmtree(path / 'classifier') if (path / 'classifier').is_dir() else None # remove existing
  824. files = list(path.rglob('*.*'))
  825. n = len(files) # number of files
  826. for im_file in tqdm(files, total=n):
  827. if im_file.suffix[1:] in img_formats:
  828. # image
  829. im = cv2.imread(str(im_file))[..., ::-1] # BGR to RGB
  830. h, w = im.shape[:2]
  831. # labels
  832. lb_file = Path(img2label_paths([str(im_file)])[0])
  833. if Path(lb_file).exists():
  834. with open(lb_file, 'r') as f:
  835. lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels
  836. for j, x in enumerate(lb):
  837. c = int(x[0]) # class
  838. f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg' # new filename
  839. if not f.parent.is_dir():
  840. f.parent.mkdir(parents=True)
  841. b = x[1:] * [w, h, w, h] # box
  842. # b[2:] = b[2:].max() # rectangle to square
  843. b[2:] = b[2:] * 1.2 + 3 # pad
  844. b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int)
  845. b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image
  846. b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
  847. assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}'
  848. def autosplit(path='../datasets/coco128/images', weights=(0.9, 0.1, 0.0), annotated_only=False):
  849. """ Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
  850. Usage: from utils.datasets import *; autosplit()
  851. Arguments
  852. path: Path to images directory
  853. weights: Train, val, test weights (list, tuple)
  854. annotated_only: Only use images with an annotated txt file
  855. """
  856. path = Path(path) # images dir
  857. files = sum([list(path.rglob(f"*.{img_ext}")) for img_ext in img_formats], []) # image files only
  858. n = len(files) # number of files
  859. random.seed(0) # for reproducibility
  860. indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split
  861. txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files
  862. [(path.parent / x).unlink(missing_ok=True) for x in txt] # remove existing
  863. print(f'Autosplitting images from {path}' + ', using *.txt labeled images only' * annotated_only)
  864. for i, img in tqdm(zip(indices, files), total=n):
  865. if not annotated_only or Path(img2label_paths([str(img)])[0]).exists(): # check label
  866. with open(path.parent / txt[i], 'a') as f:
  867. f.write('./' + img.relative_to(path.parent).as_posix() + '\n') # add image to txt file
  868. def verify_image_label(args):
  869. # Verify one image-label pair
  870. im_file, lb_file, prefix = args
  871. nm, nf, ne, nc = 0, 0, 0, 0 # number missing, found, empty, corrupt
  872. try:
  873. # verify images
  874. im = Image.open(im_file)
  875. im.verify() # PIL verify
  876. shape = exif_size(im) # image size
  877. assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels'
  878. assert im.format.lower() in img_formats, f'invalid image format {im.format}'
  879. if im.format.lower() in ('jpg', 'jpeg'):
  880. with open(im_file, 'rb') as f:
  881. f.seek(-2, 2)
  882. assert f.read() == b'\xff\xd9', 'corrupted JPEG'
  883. # verify labels
  884. segments = [] # instance segments
  885. if os.path.isfile(lb_file):
  886. nf = 1 # label found
  887. with open(lb_file, 'r') as f:
  888. l = [x.split() for x in f.read().strip().splitlines() if len(x)]
  889. if any([len(x) > 8 for x in l]): # is segment
  890. classes = np.array([x[0] for x in l], dtype=np.float32)
  891. segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in l] # (cls, xy1...)
  892. l = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh)
  893. l = np.array(l, dtype=np.float32)
  894. if len(l):
  895. assert l.shape[1] == 5, 'labels require 5 columns each'
  896. assert (l >= 0).all(), 'negative labels'
  897. assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels'
  898. assert np.unique(l, axis=0).shape[0] == l.shape[0], 'duplicate labels'
  899. else:
  900. ne = 1 # label empty
  901. l = np.zeros((0, 5), dtype=np.float32)
  902. else:
  903. nm = 1 # label missing
  904. l = np.zeros((0, 5), dtype=np.float32)
  905. return im_file, l, shape, segments, nm, nf, ne, nc, ''
  906. except Exception as e:
  907. nc = 1
  908. msg = f'{prefix}WARNING: Ignoring corrupted image and/or label {im_file}: {e}'
  909. return [None, None, None, None, nm, nf, ne, nc, msg]
  910. def dataset_stats(path='coco128.yaml', autodownload=False, verbose=False):
  911. """ Return dataset statistics dictionary with images and instances counts per split per class
  912. Usage: from utils.datasets import *; dataset_stats('coco128.yaml', verbose=True)
  913. Arguments
  914. path: Path to data.yaml
  915. autodownload: Attempt to download dataset if not found locally
  916. verbose: Print stats dictionary
  917. """
  918. def round_labels(labels):
  919. # Update labels to integer class and 6 decimal place floats
  920. return [[int(c), *[round(x, 6) for x in points]] for c, *points in labels]
  921. with open(check_file(path)) as f:
  922. data = yaml.safe_load(f) # data dict
  923. check_dataset(data, autodownload) # download dataset if missing
  924. nc = data['nc'] # number of classes
  925. stats = {'nc': nc, 'names': data['names']} # statistics dictionary
  926. for split in 'train', 'val', 'test':
  927. if split not in data:
  928. stats[split] = None # i.e. no test set
  929. continue
  930. x = []
  931. dataset = LoadImagesAndLabels(data[split], augment=False, rect=True) # load dataset
  932. if split == 'train':
  933. cache_path = Path(dataset.label_files[0]).parent.with_suffix('.cache') # *.cache path
  934. for label in tqdm(dataset.labels, total=dataset.n, desc='Statistics'):
  935. x.append(np.bincount(label[:, 0].astype(int), minlength=nc))
  936. x = np.array(x) # shape(128x80)
  937. stats[split] = {'instance_stats': {'total': int(x.sum()), 'per_class': x.sum(0).tolist()},
  938. 'image_stats': {'total': dataset.n, 'unlabelled': int(np.all(x == 0, 1).sum()),
  939. 'per_class': (x > 0).sum(0).tolist()},
  940. 'labels': [{str(Path(k).name): round_labels(v.tolist())} for k, v in
  941. zip(dataset.img_files, dataset.labels)]}
  942. # Save, print and return
  943. with open(cache_path.with_suffix('.json'), 'w') as f:
  944. json.dump(stats, f) # save stats *.json
  945. if verbose:
  946. print(json.dumps(stats, indent=2, sort_keys=False))
  947. # print(yaml.dump([stats], sort_keys=False, default_flow_style=False))
  948. return stats
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...