1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
|
- # YOLOv5 experimental modules
- import numpy as np
- import torch
- import torch.nn as nn
- from models.common import Conv, DWConv
- from utils.google_utils import attempt_download
- class CrossConv(nn.Module):
- # Cross Convolution Downsample
- def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
- # ch_in, ch_out, kernel, stride, groups, expansion, shortcut
- super(CrossConv, self).__init__()
- c_ = int(c2 * e) # hidden channels
- self.cv1 = Conv(c1, c_, (1, k), (1, s))
- self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
- self.add = shortcut and c1 == c2
- def forward(self, x):
- return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
- class Sum(nn.Module):
- # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
- def __init__(self, n, weight=False): # n: number of inputs
- super(Sum, self).__init__()
- self.weight = weight # apply weights boolean
- self.iter = range(n - 1) # iter object
- if weight:
- self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True) # layer weights
- def forward(self, x):
- y = x[0] # no weight
- if self.weight:
- w = torch.sigmoid(self.w) * 2
- for i in self.iter:
- y = y + x[i + 1] * w[i]
- else:
- for i in self.iter:
- y = y + x[i + 1]
- return y
- class GhostConv(nn.Module):
- # Ghost Convolution https://github.com/huawei-noah/ghostnet
- def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
- super(GhostConv, self).__init__()
- c_ = c2 // 2 # hidden channels
- self.cv1 = Conv(c1, c_, k, s, None, g, act)
- self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)
- def forward(self, x):
- y = self.cv1(x)
- return torch.cat([y, self.cv2(y)], 1)
- class GhostBottleneck(nn.Module):
- # Ghost Bottleneck https://github.com/huawei-noah/ghostnet
- def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride
- super(GhostBottleneck, self).__init__()
- c_ = c2 // 2
- self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1), # pw
- DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
- GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
- self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False),
- Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
- def forward(self, x):
- return self.conv(x) + self.shortcut(x)
- class MixConv2d(nn.Module):
- # Mixed Depthwise Conv https://arxiv.org/abs/1907.09595
- def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
- super(MixConv2d, self).__init__()
- groups = len(k)
- if equal_ch: # equal c_ per group
- i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices
- c_ = [(i == g).sum() for g in range(groups)] # intermediate channels
- else: # equal weight.numel() per group
- b = [c2] + [0] * groups
- a = np.eye(groups + 1, groups, k=-1)
- a -= np.roll(a, 1, axis=1)
- a *= np.array(k) ** 2
- a[0] = 1
- c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
- self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)])
- self.bn = nn.BatchNorm2d(c2)
- self.act = nn.LeakyReLU(0.1, inplace=True)
- def forward(self, x):
- return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
- class Ensemble(nn.ModuleList):
- # Ensemble of models
- def __init__(self):
- super(Ensemble, self).__init__()
- def forward(self, x, augment=False):
- y = []
- for module in self:
- y.append(module(x, augment)[0])
- # y = torch.stack(y).max(0)[0] # max ensemble
- # y = torch.stack(y).mean(0) # mean ensemble
- y = torch.cat(y, 1) # nms ensemble
- return y, None # inference, train output
- def attempt_load(weights, map_location=None, inplace=True):
- from models.yolo import Detect, Model
- # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
- model = Ensemble()
- for w in weights if isinstance(weights, list) else [weights]:
- ckpt = torch.load(attempt_download(w), map_location=map_location) # load
- model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval()) # FP32 model
- # Compatibility updates
- for m in model.modules():
- if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model]:
- m.inplace = inplace # pytorch 1.7.0 compatibility
- elif type(m) is Conv:
- m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
- if len(model) == 1:
- return model[-1] # return model
- else:
- print(f'Ensemble created with {weights}\n')
- for k in ['names']:
- setattr(model, k, getattr(model[-1], k))
- model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride
- return model # return ensemble
|