Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

experimental.py 5.2 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
  1. # YOLOv5 experimental modules
  2. import numpy as np
  3. import torch
  4. import torch.nn as nn
  5. from models.common import Conv, DWConv
  6. from utils.google_utils import attempt_download
  7. class CrossConv(nn.Module):
  8. # Cross Convolution Downsample
  9. def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
  10. # ch_in, ch_out, kernel, stride, groups, expansion, shortcut
  11. super(CrossConv, self).__init__()
  12. c_ = int(c2 * e) # hidden channels
  13. self.cv1 = Conv(c1, c_, (1, k), (1, s))
  14. self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
  15. self.add = shortcut and c1 == c2
  16. def forward(self, x):
  17. return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
  18. class Sum(nn.Module):
  19. # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
  20. def __init__(self, n, weight=False): # n: number of inputs
  21. super(Sum, self).__init__()
  22. self.weight = weight # apply weights boolean
  23. self.iter = range(n - 1) # iter object
  24. if weight:
  25. self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True) # layer weights
  26. def forward(self, x):
  27. y = x[0] # no weight
  28. if self.weight:
  29. w = torch.sigmoid(self.w) * 2
  30. for i in self.iter:
  31. y = y + x[i + 1] * w[i]
  32. else:
  33. for i in self.iter:
  34. y = y + x[i + 1]
  35. return y
  36. class GhostConv(nn.Module):
  37. # Ghost Convolution https://github.com/huawei-noah/ghostnet
  38. def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
  39. super(GhostConv, self).__init__()
  40. c_ = c2 // 2 # hidden channels
  41. self.cv1 = Conv(c1, c_, k, s, None, g, act)
  42. self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)
  43. def forward(self, x):
  44. y = self.cv1(x)
  45. return torch.cat([y, self.cv2(y)], 1)
  46. class GhostBottleneck(nn.Module):
  47. # Ghost Bottleneck https://github.com/huawei-noah/ghostnet
  48. def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride
  49. super(GhostBottleneck, self).__init__()
  50. c_ = c2 // 2
  51. self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1), # pw
  52. DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
  53. GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
  54. self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False),
  55. Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
  56. def forward(self, x):
  57. return self.conv(x) + self.shortcut(x)
  58. class MixConv2d(nn.Module):
  59. # Mixed Depthwise Conv https://arxiv.org/abs/1907.09595
  60. def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
  61. super(MixConv2d, self).__init__()
  62. groups = len(k)
  63. if equal_ch: # equal c_ per group
  64. i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices
  65. c_ = [(i == g).sum() for g in range(groups)] # intermediate channels
  66. else: # equal weight.numel() per group
  67. b = [c2] + [0] * groups
  68. a = np.eye(groups + 1, groups, k=-1)
  69. a -= np.roll(a, 1, axis=1)
  70. a *= np.array(k) ** 2
  71. a[0] = 1
  72. c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
  73. self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)])
  74. self.bn = nn.BatchNorm2d(c2)
  75. self.act = nn.LeakyReLU(0.1, inplace=True)
  76. def forward(self, x):
  77. return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
  78. class Ensemble(nn.ModuleList):
  79. # Ensemble of models
  80. def __init__(self):
  81. super(Ensemble, self).__init__()
  82. def forward(self, x, augment=False):
  83. y = []
  84. for module in self:
  85. y.append(module(x, augment)[0])
  86. # y = torch.stack(y).max(0)[0] # max ensemble
  87. # y = torch.stack(y).mean(0) # mean ensemble
  88. y = torch.cat(y, 1) # nms ensemble
  89. return y, None # inference, train output
  90. def attempt_load(weights, map_location=None, inplace=True):
  91. from models.yolo import Detect, Model
  92. # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
  93. model = Ensemble()
  94. for w in weights if isinstance(weights, list) else [weights]:
  95. ckpt = torch.load(attempt_download(w), map_location=map_location) # load
  96. model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval()) # FP32 model
  97. # Compatibility updates
  98. for m in model.modules():
  99. if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model]:
  100. m.inplace = inplace # pytorch 1.7.0 compatibility
  101. elif type(m) is Conv:
  102. m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
  103. if len(model) == 1:
  104. return model[-1] # return model
  105. else:
  106. print(f'Ensemble created with {weights}\n')
  107. for k in ['names']:
  108. setattr(model, k, getattr(model[-1], k))
  109. model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride
  110. return model # return ensemble
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...