Photo by Shubham Dhage on Unsplash

High-Order Accurate Direct Numerical Simulation of Flow over a MTU-T161 Low Pressure Turbine Blade Dataset for Machine Learning

Install DagsHub:

pip install dagshub
Click on copy button to copy content

To stream this data directly on DagsHub

from dagshub.streaming import DagsHubFilesystem

fs = DagsHubFilesystem(".", repo_url="https://dagshub.com/DagsHub-Datasets/pyfr-mtu-t161-dns-data-dataset")

fs.listdir("s3://pyfr-mtu-t161-dns-data")
Click on copy button to copy content

Description

The archive comprises snapshot, point-probe, and time-average data produced via a high-fidelity computational simulation of turbulent air flow over a low pressure turbine blade, which is an important component in a jet engine. The simulation was undertaken using the open source PyFR flow solver on over 5000 Nvidia K20X GPUs of the Titan supercomputer at Oak Ridge National Laboratory under an INCITE award from the US DOE. The data can be used to develop an enhanced understanding of the complex three-dimensional unsteady air flow patterns over turbine blades in jet engines. This could in turn lead to design of greener more fuel efficient aircraft. It could also be used to train a next-generation of Reynolds Averaged Navier-Stokes turbulence models via a machine learning approach, which would have broad applicability to a wide range of science and engineering problems.

Additional information

Update frequency

Periodically

Managed by

License

CC BY 2.0

Related datasets

BodyM Dataset

Cloud to Street – Microsoft Flood and Clouds Dataset

A2D2: Audi Autonomous Driving Dataset

Galaxy Evolution Explorer Satellite (GALEX)

Launch your ML development to new heights with DagsHub

Back to top