Thank you! We'll be in touch ASAP.
Something went wrong, please try again or contact us directly at contact@dagshub.com
cornelliusyudhawijaya:master
cornelliusyudhawijaya:experiment-3
from sklearn.neural_network import MLPClassifier from sklearn.metrics import recall_score, precision_score import json import os import numpy as np import pandas as pd # Read in data X_train = np.genfromtxt("data/train_features.csv") y_train = np.genfromtxt("data/train_labels.csv") X_test = np.genfromtxt("data/test_features.csv") y_test = np.genfromtxt("data/test_labels.csv") # Fit a model clf = MLPClassifier(random_state=0, max_iter=30) clf.fit(X_train,y_train) # Get overall accuracy acc = clf.score(X_test, y_test) # Get precision and recall y_score = clf.predict(X_test) prec = precision_score(y_test, y_score) rec = recall_score(y_test,y_score) # Get the loss loss = clf.loss_curve_ pd.DataFrame(loss, columns=["loss"]).to_csv("loss.csv", index=False) with open("metrics.json", 'w') as outfile: json.dump({ "accuracy": acc, "precision":prec,"recall":rec}, outfile)
Press p or to see the previous file or, n or to see the next file