1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
|
- import cv2
- import numpy as np
- def LinearMotionBlur(image, size, angle):
- k = np.zeros((size, size), dtype=np.float32)
- k[ (size-1)// 2 , :] = np.ones(size, dtype=np.float32)
- k = cv2.warpAffine(k, cv2.getRotationMatrix2D( (size / 2 -0.5 , size / 2 -0.5 ) , angle, 1.0), (size, size) )
- k = k * ( 1.0 / np.sum(k) )
- return cv2.filter2D(image, -1, k)
-
- def blursharpen (img, sharpen_mode=0, kernel_size=3, amount=100):
- if kernel_size % 2 == 0:
- kernel_size += 1
- if amount > 0:
- if sharpen_mode == 1: #box
- kernel = np.zeros( (kernel_size, kernel_size), dtype=np.float32)
- kernel[ kernel_size//2, kernel_size//2] = 1.0
- box_filter = np.ones( (kernel_size, kernel_size), dtype=np.float32) / (kernel_size**2)
- kernel = kernel + (kernel - box_filter) * amount
- return cv2.filter2D(img, -1, kernel)
- elif sharpen_mode == 2: #gaussian
- blur = cv2.GaussianBlur(img, (kernel_size, kernel_size) , 0)
- img = cv2.addWeighted(img, 1.0 + (0.5 * amount), blur, -(0.5 * amount), 0)
- return img
- elif amount < 0:
- n = -amount
- while n > 0:
- img_blur = cv2.medianBlur(img, 5)
- if int(n / 10) != 0:
- img = img_blur
- else:
- pass_power = (n % 10) / 10.0
- img = img*(1.0-pass_power)+img_blur*pass_power
- n = max(n-10,0)
- return img
- return img
|