1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
|
- import itertools
- import os
- import sys
- import matplotlib.pyplot as plt
- from sklearn.model_selection import train_test_split
- from sklearn.metrics import confusion_matrix
- from sklearn.svm import SVC
- import numpy as np
- def set_trace():
- """A Poor mans break point"""
- # without this in iPython debugger can generate strange characters.
- from IPython.core.debugger import Pdb
- Pdb().set_trace(sys._getframe().f_back)
-
- def plot_confusion_matrix(cm,
- class_names,
- title='Confusion matrix',
- cmap=plt.cm.Blues):
- plt.imshow(cm, interpolation='nearest', cmap=cmap)
- plt.title(title)
- plt.colorbar()
- tick_marks = np.arange(len(class_names))
- plt.xticks(tick_marks, class_names, rotation=45)
- plt.yticks(tick_marks, class_names)
- plt.tight_layout()
- width, height = cm.shape
- for x in xrange(width):
- for y in xrange(height):
- plt.annotate(str(cm[x][y]), xy=(y, x),
- horizontalalignment='center',
- verticalalignment='center')
- plt.ylabel('True label')
- plt.xlabel('Predicted label')
- plt.show()
- def svm_classifier(x, y, validation):
- """Split the data into a training set and a test set."""
- """Run SVM Classifier."""
- X_train, X_test, y_train, y_test = train_test_split(x, y, random_state=0)
- classifier = SVC(kernel='linear', C=0.01)
- y_pred = classifier.fit(X_train, y_train).predict(X_test)
- class_names = np.array(['Criminals','Non-criminals'])
- cm = confusion_matrix(y_test, y_pred)
- plot_confusion_matrix(cm, class_names)
- '''
- def plot_confusion_matrix(cm, classes, normalize=False,title='Confusion matrix',cmap=plt.cm.Blues):
- if normalize:
- cm =cm.astype('float') / cm.sum(axis=1)[:, np.newaxix]
- print('Confusion matrix, without normalization')
- print(cm)
- plt.imshow(cm, interpolation='nearest', cmap=cmap)
- plt.title(title)
- plt.colorbar()
- tick_marks = np.arange(len(classes))
- plt.xticks(tick_marks, classes, rotation=45)
- plt.yticks(tick_marks, classes)
- fmt = '.2f' if normalize else 'd'
- thresh = cm.max() / 2.
- for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
- plt.text(j, i, format(cm[i, j], fmt),
- horizontalalignment="center",
- color="white" if cm[i, j] > thresh else "black")
- plt.tight_layout()
- plt.ylabel('True label')
- plt.xlabel('Predicted label')
- '''
- '''
- # Compute confusion matrix
- cnf_matrix = confusion_matrix(y_test, y_pred)
- np.set_printoptions(precision=2)
- # Plot non-normalized confusion matrix
- plt.figure()
- plot_confusion_matrix(cnf_matrix, classes=class_names,
- title='Confusion matrix, without normalization')
- # Plot normalized confusion matrix
- plt.figure()
- plot_confusion_matrix(cnf_matrix, classes=class_names, normalize=True,
- title='Normalized confusion matrix')
- plt.show()
- '''
|