1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
|
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
- import argparse
- from typing import List, Tuple
- import cv2
- import numpy as np
- import onnxruntime as ort
- import torch
- from ultralytics.utils import ASSETS, YAML
- from ultralytics.utils.checks import check_requirements, check_yaml
- class YOLOv8:
- """
- YOLOv8 object detection model class for handling ONNX inference and visualization.
- This class provides functionality to load a YOLOv8 ONNX model, perform inference on images,
- and visualize the detection results with bounding boxes and labels.
- Attributes:
- onnx_model (str): Path to the ONNX model file.
- input_image (str): Path to the input image file.
- confidence_thres (float): Confidence threshold for filtering detections.
- iou_thres (float): IoU threshold for non-maximum suppression.
- classes (List[str]): List of class names from the COCO dataset.
- color_palette (np.ndarray): Random color palette for visualizing different classes.
- input_width (int): Width dimension of the model input.
- input_height (int): Height dimension of the model input.
- img (np.ndarray): The loaded input image.
- img_height (int): Height of the input image.
- img_width (int): Width of the input image.
- Methods:
- letterbox: Resize and reshape images while maintaining aspect ratio by adding padding.
- draw_detections: Draw bounding boxes and labels on the input image based on detected objects.
- preprocess: Preprocess the input image before performing inference.
- postprocess: Perform post-processing on the model's output to extract and visualize detections.
- main: Perform inference using an ONNX model and return the output image with drawn detections.
- Examples:
- Initialize YOLOv8 detector and run inference
- >>> detector = YOLOv8("yolov8n.onnx", "image.jpg", 0.5, 0.5)
- >>> output_image = detector.main()
- """
- def __init__(self, onnx_model: str, input_image: str, confidence_thres: float, iou_thres: float):
- """
- Initialize an instance of the YOLOv8 class.
- Args:
- onnx_model (str): Path to the ONNX model.
- input_image (str): Path to the input image.
- confidence_thres (float): Confidence threshold for filtering detections.
- iou_thres (float): IoU threshold for non-maximum suppression.
- """
- self.onnx_model = onnx_model
- self.input_image = input_image
- self.confidence_thres = confidence_thres
- self.iou_thres = iou_thres
- # Load the class names from the COCO dataset
- self.classes = YAML.load(check_yaml("coco8.yaml"))["names"]
- # Generate a color palette for the classes
- self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3))
- def letterbox(self, img: np.ndarray, new_shape: Tuple[int, int] = (640, 640)) -> Tuple[np.ndarray, Tuple[int, int]]:
- """
- Resize and reshape images while maintaining aspect ratio by adding padding.
- Args:
- img (np.ndarray): Input image to be resized.
- new_shape (Tuple[int, int]): Target shape (height, width) for the image.
- Returns:
- img (np.ndarray): Resized and padded image.
- pad (Tuple[int, int]): Padding values (top, left) applied to the image.
- """
- shape = img.shape[:2] # current shape [height, width]
- # Scale ratio (new / old)
- r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
- # Compute padding
- new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
- dw, dh = (new_shape[1] - new_unpad[0]) / 2, (new_shape[0] - new_unpad[1]) / 2 # wh padding
- if shape[::-1] != new_unpad: # resize
- img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
- top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
- left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
- img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114))
- return img, (top, left)
- def draw_detections(self, img: np.ndarray, box: List[float], score: float, class_id: int) -> None:
- """Draw bounding boxes and labels on the input image based on the detected objects."""
- # Extract the coordinates of the bounding box
- x1, y1, w, h = box
- # Retrieve the color for the class ID
- color = self.color_palette[class_id]
- # Draw the bounding box on the image
- cv2.rectangle(img, (int(x1), int(y1)), (int(x1 + w), int(y1 + h)), color, 2)
- # Create the label text with class name and score
- label = f"{self.classes[class_id]}: {score:.2f}"
- # Calculate the dimensions of the label text
- (label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
- # Calculate the position of the label text
- label_x = x1
- label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10
- # Draw a filled rectangle as the background for the label text
- cv2.rectangle(
- img, (label_x, label_y - label_height), (label_x + label_width, label_y + label_height), color, cv2.FILLED
- )
- # Draw the label text on the image
- cv2.putText(img, label, (label_x, label_y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA)
- def preprocess(self) -> Tuple[np.ndarray, Tuple[int, int]]:
- """
- Preprocess the input image before performing inference.
- This method reads the input image, converts its color space, applies letterboxing to maintain aspect ratio,
- normalizes pixel values, and prepares the image data for model input.
- Returns:
- image_data (np.ndarray): Preprocessed image data ready for inference with shape (1, 3, height, width).
- pad (Tuple[int, int]): Padding values (top, left) applied during letterboxing.
- """
- # Read the input image using OpenCV
- self.img = cv2.imread(self.input_image)
- # Get the height and width of the input image
- self.img_height, self.img_width = self.img.shape[:2]
- # Convert the image color space from BGR to RGB
- img = cv2.cvtColor(self.img, cv2.COLOR_BGR2RGB)
- img, pad = self.letterbox(img, (self.input_width, self.input_height))
- # Normalize the image data by dividing it by 255.0
- image_data = np.array(img) / 255.0
- # Transpose the image to have the channel dimension as the first dimension
- image_data = np.transpose(image_data, (2, 0, 1)) # Channel first
- # Expand the dimensions of the image data to match the expected input shape
- image_data = np.expand_dims(image_data, axis=0).astype(np.float32)
- # Return the preprocessed image data
- return image_data, pad
- def postprocess(self, input_image: np.ndarray, output: List[np.ndarray], pad: Tuple[int, int]) -> np.ndarray:
- """
- Perform post-processing on the model's output to extract and visualize detections.
- This method processes the raw model output to extract bounding boxes, scores, and class IDs.
- It applies non-maximum suppression to filter overlapping detections and draws the results on the input image.
- Args:
- input_image (np.ndarray): The input image.
- output (List[np.ndarray]): The output arrays from the model.
- pad (Tuple[int, int]): Padding values (top, left) used during letterboxing.
- Returns:
- (np.ndarray): The input image with detections drawn on it.
- """
- # Transpose and squeeze the output to match the expected shape
- outputs = np.transpose(np.squeeze(output[0]))
- # Get the number of rows in the outputs array
- rows = outputs.shape[0]
- # Lists to store the bounding boxes, scores, and class IDs of the detections
- boxes = []
- scores = []
- class_ids = []
- # Calculate the scaling factors for the bounding box coordinates
- gain = min(self.input_height / self.img_height, self.input_width / self.img_width)
- outputs[:, 0] -= pad[1]
- outputs[:, 1] -= pad[0]
- # Iterate over each row in the outputs array
- for i in range(rows):
- # Extract the class scores from the current row
- classes_scores = outputs[i][4:]
- # Find the maximum score among the class scores
- max_score = np.amax(classes_scores)
- # If the maximum score is above the confidence threshold
- if max_score >= self.confidence_thres:
- # Get the class ID with the highest score
- class_id = np.argmax(classes_scores)
- # Extract the bounding box coordinates from the current row
- x, y, w, h = outputs[i][0], outputs[i][1], outputs[i][2], outputs[i][3]
- # Calculate the scaled coordinates of the bounding box
- left = int((x - w / 2) / gain)
- top = int((y - h / 2) / gain)
- width = int(w / gain)
- height = int(h / gain)
- # Add the class ID, score, and box coordinates to the respective lists
- class_ids.append(class_id)
- scores.append(max_score)
- boxes.append([left, top, width, height])
- # Apply non-maximum suppression to filter out overlapping bounding boxes
- indices = cv2.dnn.NMSBoxes(boxes, scores, self.confidence_thres, self.iou_thres)
- # Iterate over the selected indices after non-maximum suppression
- for i in indices:
- # Get the box, score, and class ID corresponding to the index
- box = boxes[i]
- score = scores[i]
- class_id = class_ids[i]
- # Draw the detection on the input image
- self.draw_detections(input_image, box, score, class_id)
- # Return the modified input image
- return input_image
- def main(self) -> np.ndarray:
- """
- Perform inference using an ONNX model and return the output image with drawn detections.
- Returns:
- (np.ndarray): The output image with drawn detections.
- """
- # Create an inference session using the ONNX model and specify execution providers
- session = ort.InferenceSession(self.onnx_model, providers=["CUDAExecutionProvider", "CPUExecutionProvider"])
- # Get the model inputs
- model_inputs = session.get_inputs()
- # Store the shape of the input for later use
- input_shape = model_inputs[0].shape
- self.input_width = input_shape[2]
- self.input_height = input_shape[3]
- # Preprocess the image data
- img_data, pad = self.preprocess()
- # Run inference using the preprocessed image data
- outputs = session.run(None, {model_inputs[0].name: img_data})
- # Perform post-processing on the outputs to obtain output image
- return self.postprocess(self.img, outputs, pad)
- if __name__ == "__main__":
- # Create an argument parser to handle command-line arguments
- parser = argparse.ArgumentParser()
- parser.add_argument("--model", type=str, default="yolov8n.onnx", help="Input your ONNX model.")
- parser.add_argument("--img", type=str, default=str(ASSETS / "bus.jpg"), help="Path to input image.")
- parser.add_argument("--conf-thres", type=float, default=0.5, help="Confidence threshold")
- parser.add_argument("--iou-thres", type=float, default=0.5, help="NMS IoU threshold")
- args = parser.parse_args()
- # Check the requirements and select the appropriate backend (CPU or GPU)
- check_requirements("onnxruntime-gpu" if torch.cuda.is_available() else "onnxruntime")
- # Create an instance of the YOLOv8 class with the specified arguments
- detection = YOLOv8(args.model, args.img, args.conf_thres, args.iou_thres)
- # Perform object detection and obtain the output image
- output_image = detection.main()
- # Display the output image in a window
- cv2.namedWindow("Output", cv2.WINDOW_NORMAL)
- cv2.imshow("Output", output_image)
- # Wait for a key press to exit
- cv2.waitKey(0)
|