Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

model_data.py 19 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
  1. # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
  2. """
  3. Module for YOLO model metadata.
  4. This module stores detailed metadata for various YOLO models including authors, organizations,
  5. publication dates, arXiv links, GitHub repositories, documentation URLs, and performance metrics.
  6. When executed as a script, it serializes this metadata to a JSON file named "model_data.json".
  7. Examples:
  8. >>> python model_metadata.py
  9. """
  10. # Dictionary containing metadata for various models
  11. data = {
  12. "YOLO12": {
  13. "author": "Yunjie Tian, Qixiang Ye, and David Doermann",
  14. "org": "University at Buffalo and University of Chinese Academy of Sciences",
  15. "date": "2025-02-18",
  16. "arxiv": "https://arxiv.org/abs/2502.12524",
  17. "github": "https://github.com/sunsmarterjie/yolov12",
  18. "docs": "https://docs.ultralytics.com/models/yolo12/",
  19. "performance": {
  20. "n": {"size": 640, "map": 40.6, "cpu": "", "t4": 1.64, "params": 2.6, "flops": 6.5},
  21. "s": {"size": 640, "map": 48.0, "cpu": "", "t4": 2.61, "params": 9.3, "flops": 21.4},
  22. "m": {"size": 640, "map": 52.5, "cpu": "", "t4": 4.86, "params": 20.2, "flops": 67.5},
  23. "l": {"size": 640, "map": 53.7, "cpu": "", "t4": 6.77, "params": 26.4, "flops": 88.9},
  24. "x": {"size": 640, "map": 55.2, "cpu": "", "t4": 11.79, "params": 59.1, "flops": 199.0},
  25. },
  26. },
  27. "YOLO11": {
  28. "author": "Glenn Jocher and Jing Qiu",
  29. "org": "Ultralytics",
  30. "date": "2024-09-27",
  31. "arxiv": None,
  32. "github": "https://github.com/ultralytics/ultralytics",
  33. "docs": "https://docs.ultralytics.com/models/yolo11/",
  34. "performance": {
  35. "n": {"size": 640, "map": 39.5, "cpu": 56.1, "t4": 1.5, "params": 2.6, "flops": 6.5},
  36. "s": {"size": 640, "map": 47.0, "cpu": 90.0, "t4": 2.5, "params": 9.4, "flops": 21.5},
  37. "m": {"size": 640, "map": 51.5, "cpu": 183.2, "t4": 4.7, "params": 20.1, "flops": 68.0},
  38. "l": {"size": 640, "map": 53.4, "cpu": 238.6, "t4": 6.2, "params": 25.3, "flops": 86.9},
  39. "x": {"size": 640, "map": 54.7, "cpu": 462.8, "t4": 11.3, "params": 56.9, "flops": 194.9},
  40. },
  41. },
  42. "YOLOv10": {
  43. "author": "Ao Wang, Hui Chen, Lihao Liu, et al.",
  44. "org": "Tsinghua University",
  45. "date": "2024-05-23",
  46. "arxiv": "https://arxiv.org/abs/2405.14458",
  47. "github": "https://github.com/THU-MIG/yolov10",
  48. "docs": "https://docs.ultralytics.com/models/yolov10/",
  49. "performance": {
  50. "n": {"size": 640, "map": 39.5, "cpu": "", "t4": 1.56, "params": 2.3, "flops": 6.7},
  51. "s": {"size": 640, "map": 46.7, "cpu": "", "t4": 2.66, "params": 7.2, "flops": 21.6},
  52. "m": {"size": 640, "map": 51.3, "cpu": "", "t4": 5.48, "params": 15.4, "flops": 59.1},
  53. "b": {"size": 640, "map": 52.7, "cpu": "", "t4": 6.54, "params": 24.4, "flops": 92.0},
  54. "l": {"size": 640, "map": 53.3, "cpu": "", "t4": 8.33, "params": 29.5, "flops": 120.3},
  55. "x": {"size": 640, "map": 54.4, "cpu": "", "t4": 12.2, "params": 56.9, "flops": 160.4},
  56. },
  57. },
  58. "YOLOv9": {
  59. "author": "Chien-Yao Wang and Hong-Yuan Mark Liao",
  60. "org": "Institute of Information Science, Academia Sinica, Taiwan",
  61. "date": "2024-02-21",
  62. "arxiv": "https://arxiv.org/abs/2402.13616",
  63. "github": "https://github.com/WongKinYiu/yolov9",
  64. "docs": "https://docs.ultralytics.com/models/yolov9/",
  65. "performance": {
  66. "t": {"size": 640, "map": 38.3, "cpu": "", "t4": 2.3, "params": 2.0, "flops": 7.7},
  67. "s": {"size": 640, "map": 46.8, "cpu": "", "t4": 3.54, "params": 7.1, "flops": 26.4},
  68. "m": {"size": 640, "map": 51.4, "cpu": "", "t4": 6.43, "params": 20.0, "flops": 76.3},
  69. "c": {"size": 640, "map": 53.0, "cpu": "", "t4": 7.16, "params": 25.3, "flops": 102.1},
  70. "e": {"size": 640, "map": 55.6, "cpu": "", "t4": 16.77, "params": 57.3, "flops": 189.0},
  71. },
  72. },
  73. "YOLOv8": {
  74. "author": "Glenn Jocher, Ayush Chaurasia, and Jing Qiu",
  75. "org": "Ultralytics",
  76. "date": "2023-01-10",
  77. "arxiv": None,
  78. "github": "https://github.com/ultralytics/ultralytics",
  79. "docs": "https://docs.ultralytics.com/models/yolov8/",
  80. "performance": {
  81. "n": {"size": 640, "map": 37.3, "cpu": 80.4, "t4": 1.47, "params": 3.2, "flops": 8.7},
  82. "s": {"size": 640, "map": 44.9, "cpu": 128.4, "t4": 2.66, "params": 11.2, "flops": 28.6},
  83. "m": {"size": 640, "map": 50.2, "cpu": 234.7, "t4": 5.86, "params": 25.9, "flops": 78.9},
  84. "l": {"size": 640, "map": 52.9, "cpu": 375.2, "t4": 9.06, "params": 43.7, "flops": 165.2},
  85. "x": {"size": 640, "map": 53.9, "cpu": 479.1, "t4": 14.37, "params": 68.2, "flops": 257.8},
  86. },
  87. },
  88. "YOLOv7": {
  89. "author": "Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao",
  90. "org": "Institute of Information Science, Academia Sinica, Taiwan",
  91. "date": "2022-07-06",
  92. "arxiv": "https://arxiv.org/abs/2207.02696",
  93. "github": "https://github.com/WongKinYiu/yolov7",
  94. "docs": "https://docs.ultralytics.com/models/yolov7/",
  95. "performance": {
  96. "l": {"size": 640, "map": 51.4, "cpu": "", "t4": 6.84, "params": 36.9, "flops": 104.7},
  97. "x": {"size": 640, "map": 53.1, "cpu": "", "t4": 11.57, "params": 71.3, "flops": 189.9},
  98. },
  99. },
  100. "YOLOv6-3.0": {
  101. "author": "Chuyi Li, Lulu Li, Yifei Geng, Hongliang Jiang, Meng Cheng, Bo Zhang, Zaidan Ke, Xiaoming Xu, and Xiangxiang Chu",
  102. "org": "Meituan",
  103. "date": "2023-01-13",
  104. "arxiv": "https://arxiv.org/abs/2301.05586",
  105. "github": "https://github.com/meituan/YOLOv6",
  106. "docs": "https://docs.ultralytics.com/models/yolov6/",
  107. "performance": {
  108. "n": {"size": 640, "map": 37.5, "cpu": "", "t4": 1.17, "params": 4.7, "flops": 11.4},
  109. "s": {"size": 640, "map": 45.0, "cpu": "", "t4": 2.66, "params": 18.5, "flops": 45.3},
  110. "m": {"size": 640, "map": 50.0, "cpu": "", "t4": 5.28, "params": 34.9, "flops": 85.8},
  111. "l": {"size": 640, "map": 52.8, "cpu": "", "t4": 8.95, "params": 59.6, "flops": 150.7},
  112. },
  113. },
  114. "YOLOv5": {
  115. "author": "Glenn Jocher",
  116. "org": "Ultralytics",
  117. "date": "2020-06-26",
  118. "arxiv": None,
  119. "github": "https://github.com/ultralytics/yolov5",
  120. "docs": "https://docs.ultralytics.com/models/yolov5/",
  121. "performance": {
  122. "n": {"size": 640, "map": 28.0, "cpu": 73.6, "t4": 1.12, "params": 2.6, "flops": 7.7},
  123. "s": {"size": 640, "map": 37.4, "cpu": 120.7, "t4": 1.92, "params": 9.1, "flops": 24.0},
  124. "m": {"size": 640, "map": 45.4, "cpu": 233.9, "t4": 4.03, "params": 25.1, "flops": 64.2},
  125. "l": {"size": 640, "map": 49.0, "cpu": 408.4, "t4": 6.61, "params": 53.2, "flops": 135.0},
  126. "x": {"size": 640, "map": 50.7, "cpu": 763.2, "t4": 11.89, "params": 97.2, "flops": 246.4},
  127. },
  128. },
  129. "PP-YOLOE+": {
  130. "author": "PaddlePaddle Authors",
  131. "org": "Baidu",
  132. "date": "2022-04-02",
  133. "arxiv": "https://arxiv.org/abs/2203.16250",
  134. "github": "https://github.com/PaddlePaddle/PaddleDetection/",
  135. "docs": "https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.8.1/configs/ppyoloe/README.md",
  136. "performance": {
  137. "t": {"size": 640, "map": 39.9, "cpu": "", "t4": 2.84, "params": 4.85, "flops": 19.15},
  138. "s": {"size": 640, "map": 43.7, "cpu": "", "t4": 2.62, "params": 7.93, "flops": 17.36},
  139. "m": {"size": 640, "map": 49.8, "cpu": "", "t4": 5.56, "params": 23.43, "flops": 49.91},
  140. "l": {"size": 640, "map": 52.9, "cpu": "", "t4": 8.36, "params": 52.20, "flops": 110.07},
  141. "x": {"size": 640, "map": 54.7, "cpu": "", "t4": 14.3, "params": 98.42, "flops": 206.59},
  142. },
  143. },
  144. "DAMO-YOLO": {
  145. "author": "Xianzhe Xu, Yiqi Jiang, Weihua Chen, Yilun Huang, Yuan Zhang, and Xiuyu Sun",
  146. "org": "Alibaba Group",
  147. "date": "2022-11-23",
  148. "arxiv": "https://arxiv.org/abs/2211.15444v2",
  149. "github": "https://github.com/tinyvision/DAMO-YOLO",
  150. "docs": "https://github.com/tinyvision/DAMO-YOLO/blob/master/README.md",
  151. "performance": {
  152. "t": {"size": 640, "map": 42.0, "cpu": "", "t4": 2.32, "params": 8.5, "flops": 18.1},
  153. "s": {"size": 640, "map": 46.0, "cpu": "", "t4": 3.45, "params": 16.3, "flops": 37.8},
  154. "m": {"size": 640, "map": 49.2, "cpu": "", "t4": 5.09, "params": 28.2, "flops": 61.8},
  155. "l": {"size": 640, "map": 50.8, "cpu": "", "t4": 7.18, "params": 42.1, "flops": 97.3},
  156. },
  157. },
  158. "YOLOX": {
  159. "author": "Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian Sun",
  160. "org": "Megvii",
  161. "date": "2021-07-18",
  162. "arxiv": "https://arxiv.org/abs/2107.08430",
  163. "github": "https://github.com/Megvii-BaseDetection/YOLOX",
  164. "docs": "https://yolox.readthedocs.io/en/latest/",
  165. "performance": {
  166. "nano": {"size": 416, "map": 25.8, "cpu": "", "t4": "", "params": 0.91, "flops": 1.08},
  167. "tiny": {"size": 416, "map": 32.8, "cpu": "", "t4": "", "params": 5.06, "flops": 6.45},
  168. "s": {"size": 640, "map": 40.5, "cpu": "", "t4": 2.56, "params": 9.0, "flops": 26.8},
  169. "m": {"size": 640, "map": 46.9, "cpu": "", "t4": 5.43, "params": 25.3, "flops": 73.8},
  170. "l": {"size": 640, "map": 49.7, "cpu": "", "t4": 9.04, "params": 54.2, "flops": 155.6},
  171. "x": {"size": 640, "map": 51.1, "cpu": "", "t4": 16.1, "params": 99.1, "flops": 281.9},
  172. },
  173. },
  174. "RTDETRv2": {
  175. "author": "Wenyu Lv, Yian Zhao, Qinyao Chang, Kui Huang, Guanzhong Wang, and Yi Liu",
  176. "org": "Baidu",
  177. "date": "2023-04-17",
  178. "arxiv": "https://arxiv.org/abs/2304.08069",
  179. "github": "https://github.com/lyuwenyu/RT-DETR/tree/main/rtdetrv2_pytorch",
  180. "docs": "https://github.com/lyuwenyu/RT-DETR/tree/main/rtdetrv2_pytorch#readme",
  181. "performance": {
  182. "s": {"size": 640, "map": 48.1, "cpu": "", "t4": 5.03, "params": 20, "flops": 60},
  183. "m": {"size": 640, "map": 51.9, "cpu": "", "t4": 7.51, "params": 36, "flops": 100},
  184. "l": {"size": 640, "map": 53.4, "cpu": "", "t4": 9.76, "params": 42, "flops": 136},
  185. "x": {"size": 640, "map": 54.3, "cpu": "", "t4": 15.03, "params": 76, "flops": 259},
  186. },
  187. },
  188. "EfficientDet": {
  189. "author": "Mingxing Tan, Ruoming Pang, and Quoc V. Le",
  190. "org": "Google",
  191. "date": "2019-11-20",
  192. "arxiv": "https://arxiv.org/abs/1911.09070",
  193. "github": "https://github.com/google/automl/tree/master/efficientdet",
  194. "docs": "https://github.com/google/automl/tree/master/efficientdet#readme",
  195. "performance": {
  196. "d0": {"size": 640, "map": 34.6, "cpu": 10.2, "t4": 3.92, "params": 3.9, "flops": 2.54},
  197. "d1": {"size": 640, "map": 40.5, "cpu": 13.5, "t4": 7.31, "params": 6.6, "flops": 6.10},
  198. "d2": {"size": 640, "map": 43.0, "cpu": 17.7, "t4": 10.92, "params": 8.1, "flops": 11.0},
  199. "d3": {"size": 640, "map": 47.5, "cpu": 28.0, "t4": 19.59, "params": 12.0, "flops": 24.9},
  200. "d4": {"size": 640, "map": 49.7, "cpu": 42.8, "t4": 33.55, "params": 20.7, "flops": 55.2},
  201. "d5": {"size": 640, "map": 51.5, "cpu": 72.5, "t4": 67.86, "params": 33.7, "flops": 130.0},
  202. "d6": {"size": 640, "map": 52.6, "cpu": 92.8, "t4": 89.29, "params": 51.9, "flops": 226.0},
  203. "d7": {"size": 640, "map": 53.7, "cpu": 122.0, "t4": 128.07, "params": 51.9, "flops": 325.0},
  204. },
  205. },
  206. "Gold-YOLO": {
  207. "author": "Cheng Wang, Wei He, Ying Nie, Jianyuan Guo, Chuanjian Liu, Yunhe Wang, and Kai Han",
  208. "org": "Huawei Noah's Ark Lab",
  209. "date": "2023-09-20",
  210. "arxiv": "https://arxiv.org/abs/2309.11331",
  211. "github": "https://github.com/huawei-noah/Efficient-Computing/tree/master/Detection/Gold-YOLO",
  212. "docs": "https://github.com/huawei-noah/Efficient-Computing/blob/master/Detection/Gold-YOLO/README.md",
  213. "performance": {
  214. "n": {"size": 640, "map": 39.9, "cpu": "", "t4": 1.66, "params": 5.6, "flops": 12.1},
  215. "s": {"size": 640, "map": 46.4, "cpu": "", "t4": 3.43, "params": 21.5, "flops": 46.0},
  216. "m": {"size": 640, "map": 51.1, "cpu": "", "t4": 6.43, "params": 41.3, "flops": 87.5},
  217. "l": {"size": 640, "map": 53.3, "cpu": "", "t4": 10.64, "params": 75.1, "flops": 151.7},
  218. },
  219. },
  220. "D-FINE": {
  221. "author": "Yansong Peng, Hebei Li, Peixi Wu, Yueyi Zhang, Xiaoyan Sun, and Feng Wu",
  222. "org": "University of Science and Technology of China",
  223. "date": "2024-10-17",
  224. "arxiv": "https://arxiv.org/abs/2410.13842",
  225. "github": "https://github.com/Peterande/D-FINE",
  226. "docs": "https://github.com/Peterande/D-FINE/blob/master/README.md",
  227. "performance": {
  228. "n": {"size": 640, "map": 42.8, "cpu": "", "t4": 2.28, "params": 4, "flops": 7},
  229. "s": {"size": 640, "map": 48.5, "cpu": "", "t4": 4.19, "params": 10, "flops": 25},
  230. "m": {"size": 640, "map": 52.3, "cpu": "", "t4": 6.85, "params": 19, "flops": 57},
  231. "l": {"size": 640, "map": 54.0, "cpu": "", "t4": 9.50, "params": 31, "flops": 91},
  232. "x": {"size": 640, "map": 55.8, "cpu": "", "t4": 15.04, "params": 62, "flops": 202},
  233. },
  234. },
  235. "YOLO-World": {
  236. "author": "Tianheng Cheng, Lin Song, Yixiao Ge, Wenyu Liu, Xinggang Wang, and Ying Shan",
  237. "org": "Tencent AILab Computer Vision Center",
  238. "date": "2024-01-30",
  239. "arxiv": "https://arxiv.org/abs/2401.17270",
  240. "github": "https://github.com/AILab-CVC/YOLO-World",
  241. "docs": "https://docs.ultralytics.com/models/yolo-world/",
  242. "performance": {
  243. "s": {"size": 640, "map": 46.1, "cpu": "", "t4": 3.46, "params": 12.7, "flops": 51.0},
  244. "m": {"size": 640, "map": 51.0, "cpu": "", "t4": 7.26, "params": 28.4, "flops": 110.5},
  245. "l": {"size": 640, "map": 53.9, "cpu": "", "t4": 11.00, "params": 46.8, "flops": 204.5},
  246. "x": {"size": 640, "map": 54.7, "cpu": "", "t4": 17.24, "params": 72.88, "flops": 309.3},
  247. },
  248. },
  249. "RTMDet": {
  250. "author": "Chengqi Lyu, Wenwei Zhang, Haian Huang, Yue Zhou, Yudong Wang, Yanyi Liu, Shilong Zhang, and Kai Chen",
  251. "org": "OpenMMLab",
  252. "date": "2022-12-14",
  253. "arxiv": "https://arxiv.org/abs/2212.07784",
  254. "github": "https://github.com/open-mmlab/mmdetection/tree/3.x/configs/rtmdet",
  255. "docs": "https://github.com/open-mmlab/mmdetection/tree/3.x/configs/rtmdet#readme",
  256. "performance": {
  257. "t": {"size": 640, "map": 41.1, "cpu": "", "t4": 2.54, "params": 4.8, "flops": 8.1},
  258. "s": {"size": 640, "map": 44.6, "cpu": "", "t4": 3.18, "params": 8.89, "flops": 14.8},
  259. "m": {"size": 640, "map": 49.4, "cpu": "", "t4": 6.82, "params": 24.71, "flops": 39.27},
  260. "l": {"size": 640, "map": 51.5, "cpu": "", "t4": 11.06, "params": 52.3, "flops": 80.23},
  261. "x": {"size": 640, "map": 52.8, "cpu": "", "t4": 19.66, "params": 94.86, "flops": 141.67},
  262. },
  263. },
  264. "YOLO-NAS": {
  265. "author": "Shay Aharon, Louis-Dupont, Ofri Masad, Kate Yurkova, Lotem Fridman, Lkdci, Eugene Khvedchenya, Ran Rubin, Natan Bagrov, Borys Tymchenko, Tomer Keren, Alexander Zhilko, and Eran-Deci",
  266. "org": "Deci AI (acquired by NVIDIA)",
  267. "date": "2023-05-03",
  268. "arxiv": None,
  269. "github": "https://github.com/Deci-AI/super-gradients/blob/master/YOLONAS.md",
  270. "docs": "https://docs.ultralytics.com/models/yolo-nas/",
  271. "performance": {
  272. "s": {"size": 640, "map": 47.5, "cpu": "", "t4": 3.09, "params": 12.2, "flops": 32.8},
  273. "m": {"size": 640, "map": 51.6, "cpu": "", "t4": 6.07, "params": 31.9, "flops": 88.9},
  274. "l": {"size": 640, "map": 52.2, "cpu": "", "t4": 7.84, "params": 42.02, "flops": 121.09},
  275. },
  276. },
  277. "FCOS": {
  278. "author": "Zhi Tian, Chunhua Shen, Hao Chen, and Tong He",
  279. "org": "The University of Adelaide",
  280. "date": "2019-04-02",
  281. "arxiv": "https://arxiv.org/abs/1904.01355",
  282. "github": "https://github.com/tianzhi0549/FCOS/",
  283. "docs": "https://github.com/tianzhi0549/FCOS/?tab=readme-ov-file#installation",
  284. "performance": {
  285. "R50": {"size": 800, "map": 36.6, "cpu": "", "t4": 15.18, "params": 32.3, "flops": 250.9},
  286. "R101": {"size": 800, "map": 39.1, "cpu": "", "t4": 18.91, "params": 51.28, "flops": 346.1},
  287. },
  288. },
  289. "SSD": {
  290. "author": "Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C. Berg",
  291. "org": "University of North Carolina at Chapel Hill",
  292. "date": "2015-12-08",
  293. "arxiv": "https://arxiv.org/abs/1512.02325",
  294. "github": "https://github.com/weiliu89/caffe/tree/ssd",
  295. "docs": "https://github.com/weiliu89/caffe/tree/ssd?tab=readme-ov-file#installation",
  296. "performance": {
  297. "300": {"size": 300, "map": 25.5, "cpu": "", "t4": 3.97, "params": 34.3, "flops": 68.7},
  298. "512": {"size": 512, "map": 29.5, "cpu": "", "t4": 8.96, "params": 36.0, "flops": 197.3},
  299. },
  300. },
  301. "RTDETRv3": {
  302. "author": "Shuo Wang, Chunlong Xia, Feng Lv and Yifeng Shi",
  303. "org": "Baidu",
  304. "date": "2024-09-13",
  305. "arxiv": "https://arxiv.org/abs/2409.08475",
  306. "github": "https://github.com/clxia12/RT-DETRv3",
  307. "docs": "https://github.com/clxia12/RT-DETRv3/blob/main/README.md",
  308. "performance": {
  309. "s": {"size": 640, "map": 48.1, "cpu": "", "t4": 5.03, "params": 20, "flops": 60},
  310. "m": {"size": 640, "map": 49.9, "cpu": "", "t4": 7.51, "params": 36, "flops": 100},
  311. "l": {"size": 640, "map": 53.4, "cpu": "", "t4": 9.76, "params": 42, "flops": 136},
  312. "x": {"size": 640, "map": 54.6, "cpu": "", "t4": 15.03, "params": 76, "flops": 259},
  313. },
  314. },
  315. "LWDETR": {
  316. "author": "Qiang Chen, Xiangbo Su, Xinyu Zhang, Jian Wang, Jiahui Chen, Yunpeng Shen, Chuchu Han, Ziliang Chen, Weixiang Xu, Fanrong Li, Shan Zhang, Kun Yao, Errui Ding, Gang Zhang, and Jingdong Wang",
  317. "org": "Baidu",
  318. "date": "2024-06-05",
  319. "arxiv": "https://arxiv.org/abs/2406.03459",
  320. "github": "https://github.com/Atten4Vis/LW-DETR",
  321. "docs": "https://github.com/Atten4Vis/LW-DETR/blob/main/README.md",
  322. "performance": {
  323. "t": {"size": 640, "map": 42.6, "cpu": "", "t4": 2.56, "params": 12.1, "flops": 11.2},
  324. "s": {"size": 640, "map": 48.0, "cpu": "", "t4": 3.72, "params": 14.6, "flops": 16.6},
  325. "m": {"size": 640, "map": 52.5, "cpu": "", "t4": 6.59, "params": 28.2, "flops": 42.8},
  326. "l": {"size": 640, "map": 56.1, "cpu": "", "t4": 10.57, "params": 46.8, "flops": 71.6},
  327. "x": {"size": 640, "map": 58.3, "cpu": "", "t4": 22.29, "params": 118.0, "flops": 174.1},
  328. },
  329. },
  330. }
  331. if __name__ == "__main__":
  332. import json
  333. # Save the YOLO model metadata to "model_data.json"
  334. with open("model_data.json", "w") as f:
  335. json.dump(data, f)
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...