Are you sure you want to delete this access key?
comments | description | keywords |
---|---|---|
true | Discover YOLO11, the latest advancement in state-of-the-art object detection, offering unmatched accuracy and efficiency for diverse computer vision tasks. | YOLO11, state-of-the-art object detection, YOLO series, Ultralytics, computer vision, AI, machine learning, deep learning |
YOLO11 is the latest iteration in the Ultralytics YOLO series of real-time object detectors, redefining what's possible with cutting-edge accuracy, speed, and efficiency. Building upon the impressive advancements of previous YOLO versions, YOLO11 introduces significant improvements in architecture and training methods, making it a versatile choice for a wide range of computer vision tasks.
Ultralytics YOLO11 π Podcast generated by NotebookLM
Watch: How to Use Ultralytics YOLO11 for Object Detection and Tracking | How to Benchmark | YOLO11 RELEASEDπ
YOLO11 builds upon the versatile model range introduced in YOLOv8, offering enhanced support across various computer vision tasks:
Model | Filenames | Task | Inference | Validation | Training | Export |
---|---|---|---|---|---|---|
YOLO11 | yolo11n.pt yolo11s.pt yolo11m.pt yolo11l.pt yolo11x.pt |
Detection | β | β | β | β |
YOLO11-seg | yolo11n-seg.pt yolo11s-seg.pt yolo11m-seg.pt yolo11l-seg.pt yolo11x-seg.pt |
Instance Segmentation | β | β | β | β |
YOLO11-pose | yolo11n-pose.pt yolo11s-pose.pt yolo11m-pose.pt yolo11l-pose.pt yolo11x-pose.pt |
Pose/Keypoints | β | β | β | β |
YOLO11-obb | yolo11n-obb.pt yolo11s-obb.pt yolo11m-obb.pt yolo11l-obb.pt yolo11x-obb.pt |
Oriented Detection | β | β | β | β |
YOLO11-cls | yolo11n-cls.pt yolo11s-cls.pt yolo11m-cls.pt yolo11l-cls.pt yolo11x-cls.pt |
Classification | β | β | β | β |
This table provides an overview of the YOLO11 model variants, showcasing their applicability in specific tasks and compatibility with operational modes such as Inference, Validation, Training, and Export. This flexibility makes YOLO11 suitable for a wide range of applications in computer vision, from real-time detection to complex segmentation tasks.
!!! tip "Performance"
=== "Detection (COCO)"
See [Detection Docs](../tasks/detect.md) for usage examples with these models trained on [COCO](../datasets/detect/coco.md), which include 80 pre-trained classes.
{% filter indent(width=8, first=False, blank=True) %} {% include "macros/yolo-det-perf.md" %} {% endfilter %}
=== "Segmentation (COCO)"
See [Segmentation Docs](../tasks/segment.md) for usage examples with these models trained on [COCO](../datasets/segment/coco.md), which include 80 pre-trained classes.
{% filter indent(width=8, first=False, blank=True) %} {% include "macros/yolo-seg-perf.md" %} {% endfilter %}
=== "Classification (ImageNet)"
See [Classification Docs](../tasks/classify.md) for usage examples with these models trained on [ImageNet](../datasets/classify/imagenet.md), which include 1000 pre-trained classes.
{% filter indent(width=8, first=False, blank=True) %} {% include "macros/yolo-cls-perf.md" %} {% endfilter %}
=== "Pose (COCO)"
See [Pose Estimation Docs](../tasks/pose.md) for usage examples with these models trained on [COCO](../datasets/pose/coco.md), which include 1 pre-trained class, 'person'.
{% filter indent(width=8, first=False, blank=True) %} {% include "macros/yolo-pose-perf.md" %} {% endfilter %}
=== "OBB (DOTAv1)"
See [Oriented Detection Docs](../tasks/obb.md) for usage examples with these models trained on [DOTAv1](../datasets/obb/dota-v2.md#dota-v10), which include 15 pre-trained classes.
{% filter indent(width=8, first=False, blank=True) %} {% include "macros/yolo-obb-perf.md" %} {% endfilter %}
This section provides simple YOLO11 training and inference examples. For full documentation on these and other modes, see the Predict, Train, Val, and Export docs pages.
Note that the example below is for YOLO11 Detect models for object detection. For additional supported tasks, see the Segment, Classify, OBB, and Pose docs.
!!! example
=== "Python"
[PyTorch](https://www.ultralytics.com/glossary/pytorch) pretrained `*.pt` models as well as configuration `*.yaml` files can be passed to the `YOLO()` class to create a model instance in Python:
```python
from ultralytics import YOLO
# Load a COCO-pretrained YOLO11n model
model = YOLO("yolo11n.pt")
# Train the model on the COCO8 example dataset for 100 epochs
results = model.train(data="coco8.yaml", epochs=100, imgsz=640)
# Run inference with the YOLO11n model on the 'bus.jpg' image
results = model("path/to/bus.jpg")
```
=== "CLI"
CLI commands are available to directly run the models:
```bash
# Load a COCO-pretrained YOLO11n model and train it on the COCO8 example dataset for 100 epochs
yolo train model=yolo11n.pt data=coco8.yaml epochs=100 imgsz=640
# Load a COCO-pretrained YOLO11n model and run inference on the 'bus.jpg' image
yolo predict model=yolo11n.pt source=path/to/bus.jpg
```
!!! tip "Ultralytics YOLO11 Publication"
Ultralytics has not published a formal research paper for YOLO11 due to the rapidly evolving nature of the models. We focus on advancing the technology and making it easier to use, rather than producing static documentation. For the most up-to-date information on YOLO architecture, features, and usage, please refer to our [GitHub repository](https://github.com/ultralytics/ultralytics) and [documentation](https://docs.ultralytics.com/).
If you use YOLO11 or any other software from this repository in your work, please cite it using the following format:
!!! quote ""
=== "BibTeX"
```bibtex
@software{yolo11_ultralytics,
author = {Glenn Jocher and Jing Qiu},
title = {Ultralytics YOLO11},
version = {11.0.0},
year = {2024},
url = {https://github.com/ultralytics/ultralytics},
orcid = {0000-0001-5950-6979, 0000-0003-3783-7069},
license = {AGPL-3.0}
}
```
Please note that the DOI is pending and will be added to the citation once it is available. YOLO11 models are provided under AGPL-3.0 and Enterprise licenses.
Ultralytics YOLO11 introduces several significant advancements over its predecessors. Key improvements include:
Training a YOLO11 model for object detection can be done using Python or CLI commands. Below are examples for both methods:
!!! Example
=== "Python"
```python
from ultralytics import YOLO
# Load a COCO-pretrained YOLO11n model
model = YOLO("yolo11n.pt")
# Train the model on the COCO8 example dataset for 100 epochs
results = model.train(data="coco8.yaml", epochs=100, imgsz=640)
```
=== "CLI"
```bash
# Load a COCO-pretrained YOLO11n model and train it on the COCO8 example dataset for 100 epochs
yolo train model=yolo11n.pt data=coco8.yaml epochs=100 imgsz=640
```
For more detailed instructions, refer to the Train documentation.
YOLO11 models are versatile and support a wide range of computer vision tasks, including:
For more information on each task, see the Detection, Instance Segmentation, Classification, Pose Estimation, and Oriented Detection documentation.
YOLO11 achieves greater accuracy with fewer parameters through advancements in model design and optimization techniques. The improved architecture allows for efficient feature extraction and processing, resulting in higher mean Average Precision (mAP) on datasets like COCO while using 22% fewer parameters than YOLOv8m. This makes YOLO11 computationally efficient without compromising on accuracy, making it suitable for deployment on resource-constrained devices.
Yes, YOLO11 is designed for adaptability across various environments, including edge devices. Its optimized architecture and efficient processing capabilities make it suitable for deployment on edge devices, cloud platforms, and systems supporting NVIDIA GPUs. This flexibility ensures that YOLO11 can be used in diverse applications, from real-time detection on mobile devices to complex segmentation tasks in cloud environments. For more details on deployment options, refer to the Export documentation.
Press p or to see the previous file or, n or to see the next file
Are you sure you want to delete this access key?
Are you sure you want to delete this access key?
Are you sure you want to delete this access key?
Are you sure you want to delete this access key?