1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
|
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
- import argparse
- from typing import List
- import cv2
- import numpy as np
- import onnxruntime as ort
- import torch
- from ultralytics.utils import ASSETS, yaml_load
- from ultralytics.utils.checks import check_requirements, check_yaml
- class RTDETR:
- """
- RTDETR object detection model class for handling inference and visualization.
- This class implements the RT-DETR (Real-Time Detection Transformer) model for object detection tasks,
- supporting ONNX model inference and visualization of detection results.
- Attributes:
- model_path (str): Path to the ONNX model file.
- img_path (str): Path to the input image.
- conf_thres (float): Confidence threshold for filtering detections.
- iou_thres (float): IoU threshold for non-maximum suppression.
- session (ort.InferenceSession): ONNX runtime inference session.
- model_input (list): Model input metadata.
- input_width (int): Width dimension required by the model.
- input_height (int): Height dimension required by the model.
- classes (List[str]): List of class names from COCO dataset.
- color_palette (np.ndarray): Random color palette for visualization.
- img (np.ndarray): Loaded input image.
- img_height (int): Height of the input image.
- img_width (int): Width of the input image.
- """
- def __init__(self, model_path: str, img_path: str, conf_thres: float = 0.5, iou_thres: float = 0.5):
- """
- Initialize the RTDETR object detection model.
- Args:
- model_path (str): Path to the ONNX model file.
- img_path (str): Path to the input image.
- conf_thres (float): Confidence threshold for filtering detections.
- iou_thres (float): IoU threshold for non-maximum suppression.
- """
- self.model_path = model_path
- self.img_path = img_path
- self.conf_thres = conf_thres
- self.iou_thres = iou_thres
- # Set up the ONNX runtime session with CUDA and CPU execution providers
- self.session = ort.InferenceSession(model_path, providers=["CUDAExecutionProvider", "CPUExecutionProvider"])
- self.model_input = self.session.get_inputs()
- self.input_width = self.model_input[0].shape[2]
- self.input_height = self.model_input[0].shape[3]
- # Load class names from the COCO dataset YAML file
- self.classes = yaml_load(check_yaml("coco8.yaml"))["names"]
- # Generate a color palette for drawing bounding boxes
- self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3))
- def draw_detections(self, box: np.ndarray, score: float, class_id: int) -> None:
- """
- Draw bounding boxes and labels on the input image for detected objects.
- Args:
- box (np.ndarray): Detected bounding box coordinates [x1, y1, x2, y2].
- score (float): Confidence score of the detection.
- class_id (int): Class ID for the detected object.
- """
- # Extract the coordinates of the bounding box
- x1, y1, x2, y2 = box
- # Retrieve the color for the class ID
- color = self.color_palette[class_id]
- # Draw the bounding box on the image
- cv2.rectangle(self.img, (int(x1), int(y1)), (int(x2), int(y2)), color, 2)
- # Create the label text with class name and score
- label = f"{self.classes[class_id]}: {score:.2f}"
- # Calculate the dimensions of the label text
- (label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
- # Calculate the position of the label text
- label_x = x1
- label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10
- # Draw a filled rectangle as the background for the label text
- cv2.rectangle(
- self.img,
- (int(label_x), int(label_y - label_height)),
- (int(label_x + label_width), int(label_y + label_height)),
- color,
- cv2.FILLED,
- )
- # Draw the label text on the image
- cv2.putText(
- self.img, label, (int(label_x), int(label_y)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA
- )
- def preprocess(self) -> np.ndarray:
- """
- Preprocess the input image for model inference.
- Loads the image, converts color space, resizes to model input dimensions, and normalizes pixel values.
- Returns:
- (np.ndarray): Preprocessed image data with shape (1, 3, H, W) ready for inference.
- """
- # Read the input image using OpenCV
- self.img = cv2.imread(self.img_path)
- # Get the height and width of the input image
- self.img_height, self.img_width = self.img.shape[:2]
- # Convert the image color space from BGR to RGB
- img = cv2.cvtColor(self.img, cv2.COLOR_BGR2RGB)
- # Resize the image to match the input shape
- img = cv2.resize(img, (self.input_width, self.input_height))
- # Normalize the image data by dividing it by 255.0
- image_data = np.array(img) / 255.0
- # Transpose the image to have the channel dimension as the first dimension
- image_data = np.transpose(image_data, (2, 0, 1)) # Channel first
- # Expand the dimensions of the image data to match the expected input shape
- image_data = np.expand_dims(image_data, axis=0).astype(np.float32)
- return image_data
- def bbox_cxcywh_to_xyxy(self, boxes: np.ndarray) -> np.ndarray:
- """
- Convert bounding boxes from (cx, cy, w, h) format to (x_min, y_min, x_max, y_max) format.
- Args:
- boxes (np.ndarray): Array of shape (N, 4) where each row represents a bounding box in (cx, cy, w, h) format.
- Returns:
- (np.ndarray): Array of shape (N, 4) with bounding boxes in (x_min, y_min, x_max, y_max) format.
- """
- # Calculate half width and half height of the bounding boxes
- half_width = boxes[:, 2] / 2
- half_height = boxes[:, 3] / 2
- # Calculate the coordinates of the bounding boxes
- x_min = boxes[:, 0] - half_width
- y_min = boxes[:, 1] - half_height
- x_max = boxes[:, 0] + half_width
- y_max = boxes[:, 1] + half_height
- # Return the bounding boxes in (x_min, y_min, x_max, y_max) format
- return np.column_stack((x_min, y_min, x_max, y_max))
- def postprocess(self, model_output: List[np.ndarray]) -> np.ndarray:
- """
- Postprocess model output to extract and visualize detections.
- Args:
- model_output (List[np.ndarray]): Output tensors from the model inference.
- Returns:
- (np.ndarray): Annotated image with detection bounding boxes and labels.
- """
- # Squeeze the model output to remove unnecessary dimensions
- outputs = np.squeeze(model_output[0])
- # Extract bounding boxes and scores from the model output
- boxes = outputs[:, :4]
- scores = outputs[:, 4:]
- # Get the class labels and scores for each detection
- labels = np.argmax(scores, axis=1)
- scores = np.max(scores, axis=1)
- # Apply confidence threshold to filter out low-confidence detections
- mask = scores > self.conf_thres
- boxes, scores, labels = boxes[mask], scores[mask], labels[mask]
- # Convert bounding boxes to (x_min, y_min, x_max, y_max) format
- boxes = self.bbox_cxcywh_to_xyxy(boxes)
- # Scale bounding boxes to match the original image dimensions
- boxes[:, 0::2] *= self.img_width
- boxes[:, 1::2] *= self.img_height
- # Draw detections on the image
- for box, score, label in zip(boxes, scores, labels):
- self.draw_detections(box, score, label)
- return self.img
- def main(self) -> np.ndarray:
- """
- Execute object detection on the input image using the ONNX model.
- Performs the complete detection pipeline: preprocessing, inference, and postprocessing.
- Returns:
- (np.ndarray): Output image with detection annotations.
- """
- # Preprocess the image for model input
- image_data = self.preprocess()
- # Run the model inference
- model_output = self.session.run(None, {self.model_input[0].name: image_data})
- # Process and return the model output
- return self.postprocess(model_output)
- if __name__ == "__main__":
- # Set up argument parser for command-line arguments
- parser = argparse.ArgumentParser()
- parser.add_argument("--model", type=str, default="rtdetr-l.onnx", help="Path to the ONNX model file.")
- parser.add_argument("--img", type=str, default=str(ASSETS / "bus.jpg"), help="Path to the input image.")
- parser.add_argument("--conf-thres", type=float, default=0.5, help="Confidence threshold for object detection.")
- parser.add_argument("--iou-thres", type=float, default=0.5, help="IoU threshold for non-maximum suppression.")
- args = parser.parse_args()
- # Check for dependencies and set up ONNX runtime
- check_requirements("onnxruntime-gpu" if torch.cuda.is_available() else "onnxruntime")
- # Create the detector instance with specified parameters
- detection = RTDETR(args.model, args.img, args.conf_thres, args.iou_thres)
- # Perform detection and get the output image
- output_image = detection.main()
- # Display the annotated output image
- cv2.namedWindow("Output", cv2.WINDOW_NORMAL)
- cv2.imshow("Output", output_image)
- cv2.waitKey(0)
|