1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
|
- // Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
- #include <stdio.h>
- #include <stdlib.h>
- #include <vector>
- #include <string>
- #include <regex>
- #include <MNN/ImageProcess.hpp>
- #include <MNN/expr/Module.hpp>
- #include <MNN/expr/Executor.hpp>
- #include <MNN/expr/ExprCreator.hpp>
- #include <cv/cv.hpp>
- using namespace MNN;
- using namespace MNN::Express;
- using namespace MNN::CV;
- class Inference {
- public:
- Inference() : interpreter(nullptr), session(nullptr), inputTensor(nullptr) {
- inputDims = {1, 3, 640, 640};
- }
- ~Inference() {
- if(interpreter) {
- delete interpreter;
- interpreter = nullptr;
- }
- }
- // Load model, create session, and resize the input tensor.
- bool loadModel(const std::string &modelPath,
- int forwardType = MNN_FORWARD_CPU,
- int precision = 1,
- int thread = 4) {
- MNN::ScheduleConfig sConfig;
- sConfig.type = static_cast<MNNForwardType>(forwardType);
- sConfig.numThread = thread;
- BackendConfig bConfig;
- bConfig.precision = static_cast<BackendConfig::PrecisionMode>(precision);
- sConfig.backendConfig = &bConfig;
- interpreter = MNN::Interpreter::createFromFile(modelPath.c_str());
- if (!interpreter) {
- MNN_PRINT("Error: Failed to create interpreter from model file.\n");
- return false;
- }
- session = interpreter->createSession(sConfig);
- if(!session) {
- MNN_PRINT("Error: Failed to create session.\n");
- return false;
- }
- inputTensor = interpreter->getSessionInput(session, "images");
- interpreter->resizeTensor(inputTensor, inputDims);
- interpreter->resizeSession(session);
- std::string bizCode = interpreter->bizCode();
- // Get names from bizCode.
- auto names_start = bizCode.find("\"names\": {");
- if (names_start == std::string::npos) {
- MNN_PRINT("No names found in bizCode, setting classNames empty.\n");
- classNames.clear();
- } else {
- auto names_end = bizCode.find("}", names_start);
- if (names_end == std::string::npos) {
- MNN_PRINT("No closing brace for names in bizCode, setting classNames empty.\n");
- classNames.clear();
- } else {
- std::string namesDict = bizCode.substr(names_start + 10, names_end - names_start - 10);
- parseClassNamesFromBizCode(namesDict);
- }
- }
- return true;
- }
- void parseClassNamesFromBizCode(const std::string& bizText) {
- std::regex rgx("\"(\\d+)\"\\s*:\\s*\"([^\"]+)\"");
- std::smatch match;
- std::string s = bizText;
- classNames.clear();
- while (std::regex_search(s, match, rgx)) {
- int index = std::stoi(match[1].str());
- std::string name = match[2].str();
- if (classNames.size() <= static_cast<size_t>(index)) {
- classNames.resize(index + 1);
- }
- classNames[index] = name;
- s = match.suffix().str();
- }
- }
- VARP preprocess(VARP &originalImage, int targetSize, float &scale) {
- const auto dims = originalImage->getInfo()->dim;
- const int ih = dims[0], iw = dims[1];
- const int len = (ih >= iw ? ih : iw);
- scale = static_cast<float>(len) / targetSize;
- // Use fixed-size array for padding values.
- int padvals[6] = { 0, len - ih, 0, len - iw, 0, 0 };
- auto pads = _Const(static_cast<void*>(padvals), {3, 2}, NCHW, halide_type_of<int>());
- auto padded = _Pad(originalImage, pads, CONSTANT);
- auto resized = MNN::CV::resize(padded, MNN::CV::Size(targetSize, targetSize),
- 0, 0, MNN::CV::INTER_LINEAR, -1,
- {0.f, 0.f, 0.f},
- {1.f/255, 1.f/255, 1.f/255});
- // Chain unsqueeze and conversion
- auto input = _Unsqueeze(resized, {0});
- input = _Convert(input, NCHW);
- return input;
- }
- // Run inference by copying preprocessed data into input tensor.
- void runInference(VARP input) {
- auto tmp_input = MNN::Tensor::create(inputDims, halide_type_of<float>(),
- const_cast<void*>(input->readMap<void>()),
- MNN::Tensor::CAFFE);
- inputTensor->copyFromHostTensor(tmp_input);
- interpreter->runSession(session);
- }
- // Postprocess the output, perform NMS, and draw bounding boxes on originalImage.
- void postprocess(float scale, VARP originalImage, float modelScoreThreshold = 0.25, float modelNMSThreshold = 0.45) {
- auto outputTensor = interpreter->getSessionOutput(session, "output0");
- // ---------------- Post Processing ----------------
- auto outputs = outputTensor->host<float>();
- auto outputVar = _Const(outputs, outputTensor->shape(), NCHW, halide_type_of<float>());
- auto output = _Squeeze(_Convert(outputVar, NCHW));
- // Expected output shape: [84, 8400] where first 4 rows are [cx, cy, w, h].
- auto cx = _Gather(output, _Scalar<int>(0));
- auto cy = _Gather(output, _Scalar<int>(1));
- auto w = _Gather(output, _Scalar<int>(2));
- auto h = _Gather(output, _Scalar<int>(3));
- // Slice probability values (starting at row 4).
- const int startArr[2] = { 4, 0 };
- const int sizeArr[2] = { -1, -1 };
- auto start = _Const(static_cast<void*>(const_cast<int*>(startArr)), {2}, NCHW, halide_type_of<int>());
- auto size = _Const(static_cast<void*>(const_cast<int*>(sizeArr)), {2}, NCHW, halide_type_of<int>());
- auto probs = _Slice(output, start, size);
- // Convert [cx, cy, w, h] to [y1, x1, y2, x2] using half-width/height.
- auto half = _Const(0.5);
- auto x1 = cx - w * half;
- auto y1 = cy - h * half;
- auto x2 = cx + w * half;
- auto y2 = cy + h * half;
- auto boxes = _Stack({x1, y1, x2, y2}, 1);
- auto scores = _ReduceMax(probs, {0});
- auto ids = _ArgMax(probs, 0);
- auto result_ids = _Nms(boxes, scores, 100, modelScoreThreshold, modelNMSThreshold);
- auto result_ptr = result_ids->readMap<int>();
- auto box_ptr = boxes->readMap<float>();
- auto ids_ptr = ids->readMap<int>();
- auto score_ptr = scores->readMap<float>();
- const int numResults = result_ids->getInfo()->size;
- for (int i = 0; i < numResults; i++) {
- int idx = result_ptr[i];
- if (idx < 0) break;
- float x1 = box_ptr[idx * 4 + 0] * scale;
- float y1 = box_ptr[idx * 4 + 1] * scale;
- float x2 = box_ptr[idx * 4 + 2] * scale;
- float y2 = box_ptr[idx * 4 + 3] * scale;
- int class_idx = ids_ptr[idx];
- float score = score_ptr[idx];
- printf("Detection: box = {%.2f, %.2f, %.2f, %.2f}, class = %s, score = %.2f\n",
- x1, y1, x2, y2, classNames[class_idx].c_str(), score);
- rectangle(originalImage, { x1, y1 }, { x2, y2 }, { 0, 255, 0 }, 2);
- MNN::CV::rectangle(originalImage, { x1, y1 }, { x2, y2 }, { 0, 255, 0 }, 2);
- // Note: MNN::CV does not offer a putText function.
- // For text annotations, consider converting the image to cv::Mat and using OpenCV.
- }
- if (MNN::CV::imwrite("mnn_yolov8_cpp.jpg", originalImage)) {
- MNN_PRINT("Result image written to `mnn_yolov8_cpp.jpg`.\n");
- }
- }
- private:
- MNN::Interpreter* interpreter;
- MNN::Session* session;
- MNN::Tensor* inputTensor;
- std::vector<int> inputDims;
- std::vector<std::string> classNames;
- };
- int main(int argc, const char* argv[]) {
- if (argc < 3) {
- MNN_PRINT("Usage: ./main yolov8n.mnn input.jpg [backend] [precision] [thread]\n");
- return 0;
- }
- int backend = MNN_FORWARD_CPU;
- int precision = 1;
- int thread = 4;
- if (argc >= 4) {
- backend = atoi(argv[3]);
- }
- if (argc >= 5) {
- precision = atoi(argv[4]);
- }
- if (argc >= 6) {
- thread = atoi(argv[5]);
- }
- Inference infer;
- if (!infer.loadModel(argv[1], backend, precision, thread))
- return 1;
- const clock_t begin_time = clock();
- float scale = 1.0f;
- VARP originalImage = imread(argv[2]);
- VARP input = infer.preprocess(originalImage, 640, scale);
- auto preprocess_time = 1000.0 * (clock() - begin_time) / CLOCKS_PER_SEC;
- const clock_t begin_time2 = clock();
- infer.runInference(input);
- auto inference_time = 1000.0 * (clock() - begin_time2) / CLOCKS_PER_SEC;
- const clock_t begin_time3 = clock();
- infer.postprocess(scale, originalImage);
- auto postprocess_time = 1000.0 * (clock() - begin_time3) / CLOCKS_PER_SEC;
- printf("Speed: %.1fms preprocess, %.1fms inference, %.1fms postprocess\n",
- preprocess_time, inference_time, postprocess_time);
- return 0;
- }
|