Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

Dockerfile-jetson-jetpack4 3.9 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
  1. # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
  2. # Builds ultralytics/ultralytics:latest-jetson-jetpack4 image on DockerHub https://hub.docker.com/r/ultralytics/ultralytics
  3. # Supports JetPack4.x for YOLO on Jetson Nano, TX2, Xavier NX, AGX Xavier
  4. # Start FROM https://catalog.ngc.nvidia.com/orgs/nvidia/containers/l4t-cuda
  5. FROM nvcr.io/nvidia/l4t-cuda:10.2.460-runtime
  6. # Set environment variables
  7. ENV PYTHONUNBUFFERED=1 \
  8. PYTHONDONTWRITEBYTECODE=1
  9. # Downloads to user config dir
  10. ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.ttf \
  11. https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.Unicode.ttf \
  12. /root/.config/Ultralytics/
  13. # Add NVIDIA repositories for TensorRT dependencies
  14. RUN wget -q -O - https://repo.download.nvidia.com/jetson/jetson-ota-public.asc | apt-key add - && \
  15. echo "deb https://repo.download.nvidia.com/jetson/common r32.7 main" > /etc/apt/sources.list.d/nvidia-l4t-apt-source.list && \
  16. echo "deb https://repo.download.nvidia.com/jetson/t194 r32.7 main" >> /etc/apt/sources.list.d/nvidia-l4t-apt-source.list
  17. # Install dependencies
  18. # pkg-config and libhdf5-dev (not included) are needed to build 'h5py==3.11.0' aarch64 wheel required by 'tensorflow'
  19. # gnupg required for Edge TPU install
  20. RUN apt-get update && \
  21. apt-get install -y --no-install-recommends \
  22. git python3.8 python3.8-dev python3-pip python3-libnvinfer libopenmpi-dev libopenblas-base libomp-dev gcc \
  23. && rm -rf /var/lib/apt/lists/*
  24. # Create symbolic links for python3.8 and pip3
  25. RUN ln -sf /usr/bin/python3.8 /usr/bin/python3 && \
  26. ln -s /usr/bin/pip3 /usr/bin/pip
  27. # Create working directory
  28. WORKDIR /ultralytics
  29. # Copy contents and configure git
  30. COPY . .
  31. RUN sed -i '/^\[http "https:\/\/github\.com\/"\]/,+1d' .git/config && \
  32. sed -i'' -e 's/"opencv-python/"opencv-python-headless/' pyproject.toml
  33. ADD https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt .
  34. # Download onnxruntime-gpu 1.8.0 and tensorrt 8.2.0.6
  35. # Other versions can be seen in https://elinux.org/Jetson_Zoo and https://forums.developer.nvidia.com/t/pytorch-for-jetson/72048
  36. ADD https://nvidia.box.com/shared/static/gjqofg7rkg97z3gc8jeyup6t8n9j8xjw.whl onnxruntime_gpu-1.8.0-cp38-cp38-linux_aarch64.whl
  37. ADD https://forums.developer.nvidia.com/uploads/short-url/hASzFOm9YsJx6VVFrDW1g44CMmv.whl tensorrt-8.2.0.6-cp38-none-linux_aarch64.whl
  38. # Replace pyproject.toml TF.js version with 'tensorflowjs>=3.9.0' for JetPack4 compatibility
  39. RUN sed -i 's/^\( *"tensorflowjs\)>=.*\(".*\)/\1>=3.9.0\2/' pyproject.toml
  40. # Install pip packages (pip must be upgraded first before installing uv due to missing setuptools)
  41. RUN python3 -m pip install --upgrade pip && \
  42. python3 -m pip install uv
  43. # Install pip packages and remove extra build files
  44. RUN uv pip install --system \
  45. onnxruntime_gpu-1.8.0-cp38-cp38-linux_aarch64.whl \
  46. tensorrt-8.2.0.6-cp38-none-linux_aarch64.whl \
  47. https://github.com/ultralytics/assets/releases/download/v0.0.0/torch-1.11.0a0+gitbc2c6ed-cp38-cp38-linux_aarch64.whl \
  48. https://github.com/ultralytics/assets/releases/download/v0.0.0/torchvision-0.12.0a0+9b5a3fe-cp38-cp38-linux_aarch64.whl && \
  49. uv pip install --system -e ".[export]" && \
  50. # Remove extra build files
  51. rm -rf *.whl /root/.config/Ultralytics/persistent_cache.json
  52. # Usage Examples -------------------------------------------------------------------------------------------------------
  53. # Build and Push
  54. # t=ultralytics/ultralytics:latest-jetson-jetpack4 && sudo docker build --platform linux/arm64 -f docker/Dockerfile-jetson-jetpack4 -t $t . && sudo docker push $t
  55. # Run
  56. # t=ultralytics/ultralytics:latest-jetson-jetpack4 && sudo docker run -it --ipc=host $t
  57. # Pull and Run
  58. # t=ultralytics/ultralytics:latest-jetson-jetpack4 && sudo docker pull $t && sudo docker run -it --ipc=host $t
  59. # Pull and Run with NVIDIA runtime
  60. # t=ultralytics/ultralytics:latest-jetson-jetpack4 && sudo docker pull $t && sudo docker run -it --ipc=host --runtime=nvidia $t
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...