Are you sure you want to delete this access key?
comments | description | keywords |
---|---|---|
true | Learn how to crop and extract objects using Ultralytics YOLOv8 for focused analysis, reduced data volume, and enhanced precision. | Ultralytics, YOLOv8, object cropping, object detection, image processing, video analysis, AI, machine learning |
Object cropping with Ultralytics YOLOv8 involves isolating and extracting specific detected objects from an image or video. The YOLOv8 model capabilities are utilized to accurately identify and delineate objects, enabling precise cropping for further analysis or manipulation.
Watch: Object Cropping using Ultralytics YOLOv8
Airport Luggage |
---|
![]() |
Suitcases Cropping at airport conveyor belt using Ultralytics YOLOv8 |
!!! example "Object Cropping using YOLOv8 Example"
=== "Object Cropping"
```python
import os
import cv2
from ultralytics import YOLO
from ultralytics.utils.plotting import Annotator, colors
model = YOLO("yolov8n.pt")
names = model.names
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
crop_dir_name = "ultralytics_crop"
if not os.path.exists(crop_dir_name):
os.mkdir(crop_dir_name)
# Video writer
video_writer = cv2.VideoWriter("object_cropping_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
idx = 0
while cap.isOpened():
success, im0 = cap.read()
if not success:
print("Video frame is empty or video processing has been successfully completed.")
break
results = model.predict(im0, show=False)
boxes = results[0].boxes.xyxy.cpu().tolist()
clss = results[0].boxes.cls.cpu().tolist()
annotator = Annotator(im0, line_width=2, example=names)
if boxes is not None:
for box, cls in zip(boxes, clss):
idx += 1
annotator.box_label(box, color=colors(int(cls), True), label=names[int(cls)])
crop_obj = im0[int(box[1]) : int(box[3]), int(box[0]) : int(box[2])]
cv2.imwrite(os.path.join(crop_dir_name, str(idx) + ".png"), crop_obj)
cv2.imshow("ultralytics", im0)
video_writer.write(im0)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
cap.release()
video_writer.release()
cv2.destroyAllWindows()
```
model.predict
{% include "macros/predict-args.md" %}
Object cropping using Ultralytics YOLOv8 involves isolating and extracting specific objects from an image or video based on YOLOv8's detection capabilities. This process allows for focused analysis, reduced data volume, and enhanced precision by leveraging YOLOv8 to identify objects with high accuracy and crop them accordingly. For an in-depth tutorial, refer to the object cropping example.
Ultralytics YOLOv8 stands out due to its precision, speed, and ease of use. It allows detailed and accurate object detection and cropping, essential for focused analysis and applications needing high data integrity. Moreover, YOLOv8 integrates seamlessly with tools like OpenVINO and TensorRT for deployments requiring real-time capabilities and optimization on diverse hardware. Explore the benefits in the guide on model export.
By using Ultralytics YOLOv8 to crop only relevant objects from your images or videos, you can significantly reduce the data size, making it more efficient for storage and processing. This process involves training the model to detect specific objects and then using the results to crop and save these portions only. For more information on exploiting Ultralytics YOLOv8's capabilities, visit our quickstart guide.
Yes, Ultralytics YOLOv8 can process real-time video feeds to detect and crop objects dynamically. The model's high-speed inference capabilities make it ideal for real-time applications such as surveillance, sports analysis, and automated inspection systems. Check out the tracking and prediction modes to understand how to implement real-time processing.
Ultralytics YOLOv8 is optimized for both CPU and GPU environments, but to achieve optimal performance, especially for real-time or high-volume inference, a dedicated GPU (e.g., NVIDIA Tesla, RTX series) is recommended. For deployment on lightweight devices, consider using CoreML for iOS or TFLite for Android. More details on supported devices and formats can be found in our model deployment options.
Press p or to see the previous file or, n or to see the next file
Browsing data directories saved to S3 is possible with DAGsHub. Let's configure your repository to easily display your data in the context of any commit!
ultralytics is now integrated with AWS S3!
Are you sure you want to delete this access key?
Browsing data directories saved to Google Cloud Storage is possible with DAGsHub. Let's configure your repository to easily display your data in the context of any commit!
ultralytics is now integrated with Google Cloud Storage!
Are you sure you want to delete this access key?
Browsing data directories saved to Azure Cloud Storage is possible with DAGsHub. Let's configure your repository to easily display your data in the context of any commit!
ultralytics is now integrated with Azure Cloud Storage!
Are you sure you want to delete this access key?
Browsing data directories saved to S3 compatible storage is possible with DAGsHub. Let's configure your repository to easily display your data in the context of any commit!
ultralytics is now integrated with your S3 compatible storage!
Are you sure you want to delete this access key?